Patents by Inventor Karl MANGELBERGER

Karl MANGELBERGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905617
    Abstract: A method produces semiconductor wafers of monocrystalline silicon. The method includes: pulling a cylindrical section of a single silicon crystal from a melt contained in a crucible, wherein the oxygen concentration in the cylindrical section is not more than 5×1017 atoms/cm3; subjecting the melt to a horizontal magnetic field; rotating the crucible at a rotational velocity and in a rotational direction during the pulling of the cylindrical section of the single crystal; and removing the semiconductor wafers of monocrystalline silicon from the cylindrical section of the single crystal. An amount of rotational velocity, averaged over time, is less than 1 rpm and the rotational direction is changed continually and the amplitude of the rotational velocity before and after the change in the rotational direction is not less than 0.5 rpm and not more than 3.0 rpm.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: February 20, 2024
    Assignee: SILTRONIC AG
    Inventors: Walter Heuwieser, Karl Mangelberger, Juergen Vetterhoeffer
  • Publication number: 20230257906
    Abstract: A crystal piece of monocrystalline silicon suitable for the production of semiconductor wafers has a length of not less than 8 cm and not more than 50 cm and a diameter of not less than 280 mm and not greater than 320 mm, wherein the fraction of the semiconductor wafers produced therefrom that are free from pinholes having a size of not more than 30 ?m is greater than 98%.
    Type: Application
    Filed: June 30, 2021
    Publication date: August 17, 2023
    Applicant: SILTRONIC AG
    Inventors: Sergiy BALANETSKYY, Toni LEHMANN, Karl MANGELBERGER, Dirk ZEMKE
  • Publication number: 20230243069
    Abstract: A semiconductor single-crystal silicon, is produced from a silicon substrate wafer containing interstitial oxygen in a concentration of more than 5 × 1016 AT/cm3 (new ASTM) by an RTA treatment of the wafer in a first heat treatment at a first temperature in a temperature range of not less than 1200° C. and not more than 1260° C. for a period of not less than 5 s and not more than 30 s, where the front side of the substrate wafer is exposed to an atmosphere containing argon; a second heat treatment at a second temperature in a temperature range of not less than 1150° C. and not more than 1190° C. for a period of not less than 15 s and not more than 20 s, where the front side of the wafer is exposed to an argon and ammonia, atmosphere, and a third heat treatment at a third temperature in a temperature range of not less than 1160° C. and not more than 1190° C. for a period of not less than 20 s and not more than 30 s, where the front side of the wafer is exposed to an atmosphere containing argon.
    Type: Application
    Filed: June 10, 2021
    Publication date: August 3, 2023
    Applicant: SILTRONIC AG
    Inventors: Michael GEHMLICH, Gudrun KISSINGER, Karl MANGELBERGER, Timo MUELLER, Michael SKROBANEK
  • Patent number: 11621330
    Abstract: Epitaxially coated semiconductor wafers of monocrystalline silicon comprise a p+-doped substrate wafer and a p-doped epitaxial layer of monocrystalline silicon which covers an upper side face of the substrate wafer; an oxygen concentration of the substrate wafer of not less than 5.3×1017 atoms/cm3 and not more than 6.0×1017 atoms/cm3; a resistivity of the substrate wafer of not less than 5 m?cm and not more than 10 m?cm; and the potential of the substrate wafer to form BMDs as a result of a heat treatment of the epitaxially coated semiconductor wafer, where a high density of BMDs has a maximum close to the surface of the substrate wafer.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: April 4, 2023
    Assignee: SILTRONIC AG
    Inventors: Andreas Sattler, Alexander Vollkopf, Karl Mangelberger
  • Publication number: 20220328636
    Abstract: Epitaxially coated semiconductor wafers of monocrystalline silicon comprise a p+-doped substrate wafer and a p-doped epitaxial layer of monocrystalline silicon which covers an upper side face of the substrate wafer; an oxygen concentration of the substrate wafer of not less than 5.3×1017 atoms/cm3 and not more than 6.0×1017 atoms/cm3; a resistivity of the substrate wafer of not less than 5 m?cm and not more than 10 m?cm; and the potential of the substrate wafer to form BMDs as a result of a heat treatment of the epitaxially coated semiconductor wafer, where a high density of BMDs has a maximum close to the surface of the substrate wafer.
    Type: Application
    Filed: June 8, 2022
    Publication date: October 13, 2022
    Applicant: SILTRONIC AG
    Inventors: Andreas SATTLER, Alexander VOLLKOPF, Karl MANGELBERGER
  • Publication number: 20220298670
    Abstract: A method produces semiconductor wafers of monocrystalline silicon. The method includes: pulling a cylindrical section of a single silicon crystal from a melt contained in a crucible, wherein the oxygen concentration in the cylindrical section is not more than 5×1017 atoms/cm3; subjecting the melt to a horizontal magnetic field; rotating the crucible at a rotational velocity and in a rotational direction during the pulling of the cylindrical section of the single crystal; and removing the semiconductor wafers of monocrystalline silicon from the cylindrical section of the single crystal. An amount of rotational velocity, averaged over time, is less than 1 rpm and the rotational direction is changed continually and the amplitude of the rotational velocity before and after the change in the rotational direction is not less than 0.5 rpm and not more than 3.0 rpm.
    Type: Application
    Filed: August 5, 2020
    Publication date: September 22, 2022
    Inventors: Walter Heuwieser, Karl Mangelberger, Juergen Vetterhoeffer
  • Publication number: 20220259762
    Abstract: Single silicon crystals having a resistivity of ?20 m?cm are pulled by the Czochralski process from a melt, by a method of pulling a first section of a neck at a first velocity whereby the diameter of a first section of the neck, with respect to the diameter of a seed crystal, tapers at a rate of ?0.3 mm per mm neck length to a diameter of not more than 5 mm; pulling a second section of the neck at a pulling velocity of <0.2 mm/min for not less than 3 min, without the diameter increasing to more than 5.5 mm; and pulling a third section of the neck at a third pulling velocity of >2 mm/min.
    Type: Application
    Filed: June 24, 2020
    Publication date: August 18, 2022
    Applicant: SILTRONIC AG
    Inventors: Karl MANGELBERGER, Walter HEUWIESER, Michael SKROBANEK
  • Patent number: 11417733
    Abstract: Epitaxially coated semiconductor wafers of monocrystalline silicon comprise a p+-doped substrate wafer and a p-doped epitaxial layer of monocrystalline silicon which covers an upper side face of the substrate wafer; an oxygen concentration of the substrate wafer of not less than 5.3×1017 atoms/cm3 and not more than 6.0×1017 atoms/cm3; a resistivity of the substrate wafer of not less than 5 m?cm and not more than 10 m?cm; and the potential of the substrate wafer to form BMDs as a result of a heat treatment of the epitaxially coated semiconductor wafer, where a high density of BMDs has a maximum close to the surface of the substrate wafer.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: August 16, 2022
    Assignee: SILTRONIC AG
    Inventors: Andreas Sattler, Alexander Vollkopf, Karl Mangelberger
  • Patent number: 10731271
    Abstract: The invention relates to a silicon wafer having a radial variation of oxygen concentration of less than 7%, determined over the entire radius of the silicon wafer. The wafers are produced in the PV region with rotation of crystal and crucible in the same direction, and in the presence of a horizontal magnetic field of defined intensity.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 4, 2020
    Assignee: SILTRONIC AG
    Inventors: Karl Mangelberger, Walter Heuwieser, Michael Skrobanek
  • Publication number: 20200168712
    Abstract: Epitaxially coated semiconductor wafers of monocrystalline silicon comprise a p+-doped substrate wafer and a p-doped epitaxial layer of monocrystalline silicon which covers an upper side face of the substrate wafer; an oxygen concentration of the substrate wafer of not less than 5.3×1017 atoms/cm3 and not more than 6.0×1017 atoms/cm3; a resistivity of the substrate wafer of not less than 5 m?cm and not more than 10 m?cm; and the potential of the substrate wafer to form BMDs as a result of a heat treatment of the epitaxially coated semiconductor wafer, where a high density of BMDs has a maximum close to the surface of the substrate wafer.
    Type: Application
    Filed: July 19, 2018
    Publication date: May 28, 2020
    Applicant: SILTRONIC AG
    Inventors: Andreas SATTLER, Alexander VOLLKOPF, Karl MANGELBERGER
  • Publication number: 20200149184
    Abstract: The invention relates to a silicon wafer having a radial variation of oxygen concentration of less than 7%, determined over the entire radius of the silicon wafer. The wafers are produced in the PV region with rotation of crystal and crucible in the same direction, and in the presence of a horizontal magnetic field of defined intensity.
    Type: Application
    Filed: December 7, 2016
    Publication date: May 14, 2020
    Applicant: SILTRONIC AG
    Inventors: Karl MANGELBERGER, Walter HEUWIESER, Michael SKROBANEK