Patents by Inventor Karl Oberdieck

Karl Oberdieck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962291
    Abstract: A driver circuit for a low-inductance power module that has a connection and an output. The connection is connectable to the source contact of a power transistor and the output is connectable to the gate contact of the power transistor. The driver circuit is configured to produce, in a first operating mode, a first gate-source voltage for the gate contact of the power transistor and to provide the first gate-source voltage at the output of the driver circuit. The driver circuit is also configured to produce, in a second operating mode, during at least one preset minimum time span, a lower second gate-source voltage for the gate contact of the power transistor and to provide the second gate-source voltage at the output of the driver circuit.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 16, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Karl Oberdieck, Christian Maier, Sebastian Strache
  • Publication number: 20240021610
    Abstract: A cascade arrangement and to a semiconductor module. The cascode arrangement includes: a substrate, a JFET, a MOSFET, and at least one sensor system. A drain terminal of the MOSFET is electrically connected to a source terminal of the JFET and a source terminal of the MOSFET is electrically connected to a gate terminal of the JFET. A first semiconductor layer in which the MOSFET is formed and a second semiconductor layer in which the JFET is formed, are situated stacked on top of one another via a connecting material. Both an electrical and a thermal coupling between the JFET and the MOSFET are implemented via the connecting material. The stacked semiconductor layers are situated on the substrate. The first semiconductor layer includes a first subarea in which the MOSFET is formed and at least one second subarea in which the at least one sensor system is formed.
    Type: Application
    Filed: June 5, 2023
    Publication date: January 18, 2024
    Inventors: Josef Goeppert, Karl Oberdieck, Manuel Riefer, Neil Davies, Alexander Sewergin, Philipp Mueller
  • Publication number: 20230231400
    Abstract: A method and device for reducing voltage loads of semiconductor components of an inverter. The method includes: ascertaining a request to charge a battery of an electric system including the battery, the inverter, and an electric machine. The inverter including a series connection including a first and a second semiconductor component, and being configured to convert a direct voltage provided by the battery into an alternating voltage for the electric machine, and adapt a gate voltage of the first semiconductor component and/or of the second semiconductor component to interrupt a current flow between the battery and the electric machine during the charging. A voltage load of a gate oxide layer of the semiconductor components is reduced by decreasing the gate voltages of the first semiconductor component and of the second semiconductor component and/or a voltage load of a drain-source path of the semiconductor components being matched to one another.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 20, 2023
    Inventors: Karl Oberdieck, Hadiuzzaman Syed, Manuel Horvath, Marco Graf, Sebastian Strache, Stephan Schwaiger
  • Publication number: 20230228810
    Abstract: A method and device for adapting temperatures of semiconductor components. The device includes a first and second semiconductor component, and an evaluation unit. The evaluation unit is configured to ascertain a first and second temperature of the first and second semiconductor component, respectively, calculate a first and second temperature deviation, which represents a deviation of the first and second temperature from a reference temperature, respectively, and adapt a first gate voltage of the first semiconductor component and/or a second gate voltage of the second semiconductor component until the first temperature deviation and the second temperature deviation are smaller than or equal to a predefined maximum allowable temperature deviation from the reference temperature. The adaptation takes place only when a predefined allowable control range for the respective gate voltage is not exceeded, and when the first temperature and/or the second temperature is/are greater than the reference temperature.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 20, 2023
    Inventors: Karl Oberdieck, Jan Homoth, Jonathan Winkler, Manuel Riefer, Michael Maercker, Sebastian Strache
  • Publication number: 20230231496
    Abstract: An inverter. The inverter includes a first and second transistors, which are a high-side transistor and a low-side transistor of the inverter, and control electronics configured to trigger a first switching operation, in which the first transistor is switched on, wherein the second transistor is in a switched-off state, wherein a parasitic capacitance of the first transistor is discharged during the first switching operation, to trigger a second switching operation, in which the first transistor is switched off or switched on again, wherein the second transistor simultaneously remains in the switched-off state, wherein the parasitic capacitance of the first transistor is already discharged in the second switching operation, to record a time difference which describes a difference between a duration of the first switching operation and a duration of the second switching operation, and to determine a characteristic operating parameter of the first transistor based on the time difference.
    Type: Application
    Filed: January 18, 2023
    Publication date: July 20, 2023
    Inventors: Hadiuzzaman Syed, Nico Wuestemann, Cristino Salcines, Karl Oberdieck
  • Publication number: 20230126070
    Abstract: A driver circuit for a low-inductance power module that has a connection and an output. The connection is connectable to the source contact of a power transistor and the output is connectable to the gate contact of the power transistor. The driver circuit is configured to produce, in a first operating mode, a first gate-source voltage for the gate contact of the power transistor and to provide the first gate-source voltage at the output of the driver circuit. The driver circuit is also configured to produce, in a second operating mode, during at least one preset minimum time span, a lower second gate-source voltage for the gate contact of the power transistor and to provide the second gate-source voltage at the output of the driver circuit.
    Type: Application
    Filed: March 4, 2021
    Publication date: April 27, 2023
    Inventors: Karl Oberdieck, Christian Maier, Sebastian Strache
  • Publication number: 20230118564
    Abstract: A power module for producing structure-borne sound. The power module includes: a control unit and a first substrate, the control unit being situated on the first substrate; at least one first power semiconductor and at least one second power semiconductor, the first substrate being situated on the at least one first power semiconductor and on the at least one second power semiconductor; a first metal connection, a second substrate, and a second metal connection, the first metal connection electrically connecting the first substrate and the second substrate, and the second metal connection being situated below the second substrate, wherein the second substrate has a piezoelectric material and the control unit is set up to excite the piezoelectric material of the second substrate so that a structure-borne sound signal is produced.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 20, 2023
    Inventors: Josef Goeppert, Karl Oberdieck, Manuel Riefer, Sebastian Strache