Patents by Inventor Karl Vilhelm Sjöstrand

Karl Vilhelm Sjöstrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127437
    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Inventors: Aseem Undvall Anand, Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter
  • Patent number: 11948283
    Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, the systems and methods described herein offer improved interactive adjustment of intensity windowing for display of nuclear medicine images. The interactive intensity window selection tools described herein utilize a nonlinear scaling function that maps user adjustments to positions of displayed indicator widgets on a scale to intensity window thresholds. The form of the scaling function increasingly magnifies user adjustments at the upper range of the scale, but remains linear at the lower end. The intensity windowing tools presented herein allow the user to adjust intensity thresholds over a full range of intensities encountered in an image, up to the maximum value, while still preserving fidelity in an important range that includes lower intensities.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: April 2, 2024
    Assignee: Progenics Pharmaceuticals, Inc.
    Inventor: Karl Vilhelm Sjöstrand
  • Patent number: 11937962
    Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, in certain embodiments, the systems and methods described herein provide improvements to several image processing steps used for automated analysis of bone scan images for assessing cancer status of a patient. For example, improved approaches for image segmentation, hotspot detection, automated classification of hotspots as representing metastases, and computation of risk indices such as bone scan index (BSI) values are provided.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: March 26, 2024
    Assignees: Progenics Pharmaceuticals, Inc., EXINI Diagnostics AB
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Lars Edenbrandt
  • Patent number: 11900597
    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: February 13, 2024
    Assignees: Progenics Pharmaceuticals, Inc., EXINI Diagnostics AB
    Inventors: Aseem Undvall Anand, Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter
  • Publication number: 20230410985
    Abstract: Presented herein are systems and methods that provide semi-automated and/or automated analysis of medical image data to determine and/or convey values of metrics that provide a picture of a patient's risk and/or disease. Technologies described herein include systems and methods for analyzing medical image data to evaluate quantitative metrics that provide snapshots of patient disease burden at particular times and/or for analyzing images taken over time to produce a longitudinal dataset that provides a picture of how a patient's risk and/or disease evolves over time during surveillance and/or in response to treatment. Metrics computed via image analysis tools described herein may themselves be used as quantitative measures of disease burden and/or may be linked to clinical endpoints that seek to measure and/or stratify patient outcomes.
    Type: Application
    Filed: June 8, 2023
    Publication date: December 21, 2023
    Inventors: Johan Martin Brynolfsson, Hannicka Maria Eleonora Sahlstedt, Jens Filip Andreas Richter, Karl Vilhelm Sjöstrand, Aseem Undvall Anand
  • Publication number: 20230205931
    Abstract: Presented herein are systems and methods that facilitate user review and uploading of files comprising medical images and associated metadata from a local computing device to a network-based image analysis and/or decision support platform. The systems and methods described herein allow image upload to be performed in a secure fashion that prevents the network-based platform from accessing sensitive data as it is prepared for upload. Prior to file upload, sensitive data elements are flagged and their values removed and/or masked. Notably, the approaches described herein provide intuitive graphical user interface (GUI) tools that allow a user, such as a medical practitioner or researcher, to review not only the images and metadata in the files that they plan to upload, but also to review and control the process by which sensitive data elements are removed and/masked, thereby confirming that all files are free of sensitive information prior to upload.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 29, 2023
    Inventor: Karl Vilhelm Sjöstrand
  • Publication number: 20230148980
    Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, in certain embodiments, the systems and methods described herein provide improvements to several image processing steps used for automated analysis of bone scan images for assessing cancer status of a patient. For example, improved approaches for image segmentation, hotspot detection, automated classification of hotspots as representing metastases, and computation of risk indices such as bone scan index (BSI) values are provided.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 18, 2023
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Lars Edenbrandt
  • Patent number: 11564621
    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 31, 2023
    Assignees: Progenies Pharmacenticals, Inc., EXINI Diagnostics AB
    Inventors: Aseem Undvall Anand, Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter
  • Patent number: 11544407
    Abstract: Presented herein are systems and methods that facilitate user review and uploading of files comprising medical images and associated metadata from a local computing device to a network-based image analysis and/or decision support platform. The systems and methods described herein allow image upload to be performed in a secure fashion that prevents the network-based platform from accessing sensitive data as it is prepared for upload. Prior to file upload, sensitive data elements are flagged and their values removed and/or masked. Notably, the approaches described herein provide intuitive graphical user interface (GUI) tools that allow a user, such as a medical practitioner or researcher, to review not only the images and metadata in the files that they plan to upload, but also to review and control the process by which sensitive data elements are removed and/masked, thereby confirming that all files are free of sensitive information prior to upload.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 3, 2023
    Assignee: Progenics Pharmaceuticals, Inc.
    Inventor: Karl Vilhelm Sjöstrand
  • Patent number: 11534125
    Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, in certain embodiments, the systems and methods described herein provide improvements to several image processing steps used for automated analysis of bone scan images for assessing cancer status of a patient. For example, improved approaches for image segmentation, hotspot detection, automated classification of hotspots as representing metastases, and computation of risk indices such as bone scan index (BSI) values are provided.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: December 27, 2022
    Assignees: Progenies Pharmaceuticals, Inc., EXINI Diagnostics AB
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Lars Edenbrandt
  • Publication number: 20220398724
    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.
    Type: Application
    Filed: August 21, 2020
    Publication date: December 15, 2022
    Inventors: Aseem Undvall Anand, Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter
  • Publication number: 20220180487
    Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, the systems and methods described herein offer improved interactive adjustment of intensity windowing for display of nuclear medicine images. The interactive intensity window selection tools described herein utilize a nonlinear scaling function that maps user adjustments to positions of displayed indicator widgets on a scale to intensity window thresholds. The form of the scaling function increasingly magnifies user adjustments at the upper range of the scale, but remains linear at the lower end. The intensity windowing tools presented herein allow the user to adjust intensity thresholds over a full range of intensities encountered in an image, up to the maximum value, while still preserving fidelity in an important range that includes lower intensities.
    Type: Application
    Filed: April 23, 2020
    Publication date: June 9, 2022
    Inventor: Karl Vilhelm Sjöstrand
  • Patent number: 10973486
    Abstract: Presented herein are systems and methods that provide for automated analysis of three-dimensional (3D) medical images of a subject in order to automatically identify specific 3D volumes within the 3D images that correspond to specific organs and/or tissue. In certain embodiments, the accurate identification of one or more such volumes can be used to determine quantitative metrics that measure uptake of radiopharmaceuticals in particular organs and/or tissue regions. These uptake metrics can be used to assess disease state in a subject, determine a prognosis for a subject, and/or determine efficacy of a treatment modality.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: April 13, 2021
    Assignees: Progenics Pharmaceuticals, Inc., EXINI Diagnostics AB
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Kerstin Elsa Maria Johnsson, Erik Konrad Gjertsson
  • Publication number: 20210093249
    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.
    Type: Application
    Filed: January 6, 2020
    Publication date: April 1, 2021
    Inventors: Aseem Undvall Anand, Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter
  • Publication number: 20200342600
    Abstract: Presented herein are systems and methods that provide for automated analysis of three-dimensional (3D) medical images of a subject in order to automatically identify specific 3D volumes within the 3D images that correspond to specific organs and/or tissue. In certain embodiments, the accurate identification of one or more such volumes can be used to determine quantitative metrics that measure uptake of radiopharmaceuticals in particular organs and/or tissue regions. These uptake metrics can be used to assess disease state in a subject, determine a prognosis for a subject, and/or determine efficacy of a treatment modality.
    Type: Application
    Filed: January 7, 2019
    Publication date: October 29, 2020
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Kerstin Elsa Maria Johnsson, Erik Konrad Gjertsson
  • Publication number: 20200337658
    Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, in certain embodiments, the systems and methods described herein provide improvements to several image processing steps used for automated analysis of bone scan images for assessing cancer status of a patient. For example, improved approaches for image segmentation, hotspot detection, automated classification of hotspots as representing metastases, and computation of risk indices such as bone scan index (BSI) values are provided.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 29, 2020
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Lars Edenbrandt
  • Publication number: 20190209116
    Abstract: Presented herein are systems and methods that provide for automated analysis of three-dimensional (3D) medical images of a subject in order to automatically identify specific 3D volumes within the 3D images that correspond to specific organs and/or tissue. In certain embodiments, the accurate identification of one or more such volumes can be used to determine quantitative metrics that measure uptake of radiopharmaceuticals in particular organs and/or tissue regions. These uptake metrics can be used to assess disease state in a subject, determine a prognosis for a subject, and/or determine efficacy of a treatment modality.
    Type: Application
    Filed: June 7, 2018
    Publication date: July 11, 2019
    Inventors: Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Kerstin Elsa Maria Johnsson, Erik Konrad Gjertsson