Patents by Inventor Karla Romero

Karla Romero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8138571
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 20, 2012
    Assignee: Globalfoundries Inc.
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Patent number: 7999326
    Abstract: By embedding a silicon/germanium mixture in a silicon layer of high tensile strain, a moderately high degree of tensile strain may be maintained in the silicon/germanium mixture, thereby enabling increased performance of N-channel transistors on the basis of silicon/germanium material. In other regions, the germanium concentration may be varied to provide different levels of tensile or compressive strain.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: August 16, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy Wei, Karla Romero, Manfred Horstmann
  • Patent number: 7807233
    Abstract: A method for forming a silicon dioxide cap layer for a carbon hard mask layer for patterning of polysilicon line features having critical dimensions of 50 nm and less is provided. To this end, a low temperature plasma enhanced CVD process is used in which the deposition rate is maintained low to provide improved controllability of the layer thickness and, thus, of the optical characteristics of the silicon dioxide layer.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: October 5, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Hartmut Ruelke, Katja Huy, Karla Romero
  • Publication number: 20100187629
    Abstract: By embedding a silicon/germanium mixture in a silicon layer of high tensile strain, a moderately high degree of tensile strain may be maintained in the silicon/germanium mixture, thereby enabling increased performance of N-channel transistors on the basis of silicon/germanium material. In other regions, the germanium concentration may be varied to provide different levels of tensile or compressive strain.
    Type: Application
    Filed: April 5, 2010
    Publication date: July 29, 2010
    Inventors: Andy Wei, Karla Romero, Manfred Horstmann
  • Patent number: 7745334
    Abstract: By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 29, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Patrick Press, Karla Romero, Martin Trentzsch, Karsten Wieczorek, Thomas Feudel, Markus Lenski, Rolf Stephan
  • Patent number: 7719060
    Abstract: By embedding a silicon/germanium mixture in a silicon layer of high tensile strain, a moderately high degree of tensile strain may be maintained in the silicon/germanium mixture, thereby enabling increased performance of N-channel transistors on the basis of silicon/germanium material. In other regions, the germanium concentration may be varied to provide different levels of tensile or compressive strain.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 18, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy Wei, Karla Romero, Manfred Horstmann
  • Patent number: 7608499
    Abstract: A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. Each of the first transistor element and the second transistor element comprises a gate electrode. A stressed material layer is deposited over the first transistor element and the second transistor element. The stressed material layer is processed to form from the stressed material layer sidewall spacers adjacent the gate electrode of the second transistor element and a hard mask covering the first transistor element. A pair of cavities is formed adjacent the gate electrode of the second transistor element. A pair of stress-creating elements is formed in the cavities and the hard mask is at least partially removed.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: October 27, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karla Romero, Sven Beyer, Jan Hoentschel, Rolf Stephan
  • Publication number: 20090236667
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Application
    Filed: April 7, 2009
    Publication date: September 24, 2009
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Patent number: 7547610
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: June 16, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Publication number: 20090108361
    Abstract: By embedding a silicon/germanium mixture in a silicon layer of high tensile strain, a moderately high degree of tensile strain may be maintained in the silicon/germanium mixture, thereby enabling increased performance of N-channel transistors on the basis of silicon/germanium material.
    Type: Application
    Filed: April 30, 2008
    Publication date: April 30, 2009
    Inventors: Andy Wei, Karla Romero, Manfred Horstmann
  • Publication number: 20080079085
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Application
    Filed: April 12, 2007
    Publication date: April 3, 2008
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Publication number: 20080081471
    Abstract: By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
    Type: Application
    Filed: April 18, 2007
    Publication date: April 3, 2008
    Inventors: Patrick Press, Karla Romero, Martin Trentzsch, Karsten Wieczorek, Thomas Feudel, Markus Lenski, Rolf Stephan
  • Publication number: 20080023771
    Abstract: A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. Each of the first transistor element and the second transistor element comprises a gate electrode. A stressed material layer is deposited over the first transistor element and the second transistor element. The stressed material layer is processed to form from the stressed material layer sidewall spacers adjacent the gate electrode of the second transistor element and a hard mask covering the first transistor element. A pair of cavities is formed adjacent the gate electrode of the second transistor element. A pair of stress-creating elements is formed in the cavities and the hard mask is at least partially removed.
    Type: Application
    Filed: March 14, 2007
    Publication date: January 31, 2008
    Inventors: Karla Romero, Sven Beyer, Jan Hoentschel, Rolf Stephan
  • Patent number: 7279389
    Abstract: By providing a hard mask layer stack including at least three different layers for patterning a gate electrode structure, constraints demanded by sophisticated lithography, as well as cap layer integrity, in a subsequent selective epitaxial growth process may be accomplished, thereby providing the potential for further device scaling of transistor devices requiring raised drain and source regions.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: October 9, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karla Romero, Thorsten Kammler, Scott Luning, Hans Van Meer
  • Publication number: 20060244069
    Abstract: By locally adapting the blocking capability of gate insulation layers for N-channel transistors and P-channel transistors, the reliability and threshold stability of the P-channel transistor may be enhanced, while nevertheless electron mobility of the N-channel transistor may be kept at a high level. This may be accomplished by incorporating a different amount of a dielectric dopant into respective gate insulation layer portions.
    Type: Application
    Filed: November 21, 2005
    Publication date: November 2, 2006
    Inventors: Karsten Wieczorek, Michael Raab, Karla Romero
  • Publication number: 20060223250
    Abstract: By providing a hard mask layer stack including at least three different layers for patterning a gate electrode structure, constraints demanded by sophisticated lithography, as well as cap layer integrity, in a subsequent selective epitaxial growth process may be accomplished, thereby providing the potential for further device scaling of transistor devices requiring raised drain and source regions.
    Type: Application
    Filed: November 16, 2005
    Publication date: October 5, 2006
    Inventors: Karla Romero, Thorsten Kammler, Scott Luning, Hans Van Meer
  • Publication number: 20050048222
    Abstract: The present invention discloses a method for forming a silicon dioxide cap layer for a carbon hard mask layer for patterning of polysilicon line features having critical dimensions of 50 nm and less. To this end, a low temperature plasma enhanced CVD process is used in which the deposition rate is maintained low to provide improved controllability of the layer thickness and, thus, of the optical characteristics of the silicon dioxide layer.
    Type: Application
    Filed: April 29, 2004
    Publication date: March 3, 2005
    Inventors: Hartmut Ruelke, Katja Huy, Karla Romero