Patents by Inventor Karoly Jakab

Karoly Jakab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230287085
    Abstract: This disclosure provides a collagen fiber-based ink for bioprinting comprising a high solid content of collagen fiber particles that are suitable for manufacturing collagen-based scaffolds and tissue equivalent implants for regenerative medicine applications.
    Type: Application
    Filed: February 23, 2023
    Publication date: September 14, 2023
    Applicant: Shu-Tung and Alice Li Foundation Inc.
    Inventors: Shu-Tung Li, Karoly Jakab
  • Publication number: 20200140808
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Patent number: 9752116
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: September 5, 2017
    Assignees: The Curators of the University of Missouri, MUSC Foundation for Research Development
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Publication number: 20170145386
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Publication number: 20160348078
    Abstract: Engineered animal skin, hide, and leather comprising a plurality of layers of collagen formed by cultured animal collagen-producing (e.g., skin) cells. Layers may be formed by elongate multicellular bodies comprising a plurality of cultured animal cells that are adhered and/or cohered to one another; wherein the elongate multicellular bodies are arranged to form a substantially planar layer for use in formation of engineered animal skin, hide, and leather. Further described herein are methods of forming engineered animal skin, hide, and leather utilizing said layers of animal collagen-producing cells.
    Type: Application
    Filed: August 10, 2016
    Publication date: December 1, 2016
    Inventors: Gabor FORGACS, Francoise Suzanne MARGA, Karoly JAKAB
  • Publication number: 20160348067
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Publication number: 20160130551
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: January 14, 2016
    Publication date: May 12, 2016
    Inventors: Gabor FORGACS, Karoly JAKAB, Adrian NEAGU, Vladimir MIRONOV
  • Publication number: 20150344828
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: August 14, 2015
    Publication date: December 3, 2015
    Inventors: Gabor Forgacs, Karoly Jakab
  • Publication number: 20150004273
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: September 4, 2014
    Publication date: January 1, 2015
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Patent number: 8852932
    Abstract: A method of making engineered tissue from a plurality of cell aggregates is disclosed. A cell suspension is centrifuged. The resulting pellet is extruded through an orifice, and the extruded pellet is cut into pieces to produce cell aggregates. A plurality of the cell aggregates are printed in a pattern, and allowed to fuse to form a desired three-dimensional engineered tissue structure. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type to enable selection of organ printing process parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 7, 2014
    Assignees: The Curators of the University of Missouri, Medical University of South Carolina, MUSC Foundation for Research Development
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Publication number: 20120288938
    Abstract: A composition comprising a plurality of cell aggregates for use in producing engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension, extruding the resulting pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing process parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: June 21, 2012
    Publication date: November 15, 2012
    Applicants: MUSC FOUNDATION FOR RESEARCH DEVELOPMENT, THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Patent number: 8241905
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: August 14, 2012
    Assignees: The Curators of the University of Missouri, MUSC Foundation for Research Development
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Publication number: 20080070304
    Abstract: A composition comprising a plurality of cell aggregates for use in the production of engineered organotypic tissue by organ printing. A method of making a plurality of cell aggregates comprises centrifuging a cell suspension to form a pellet, extruding the pellet through an orifice, and cutting the extruded pellet into pieces. Apparatus for making cell aggregates comprises an extrusion system and a cutting system. In a method of organ printing, a plurality of cell aggregates are embedded in a polymeric or gel matrix and allowed to fuse to form a desired three-dimensional tissue structure. An intermediate product comprises at least one layer of matrix and a plurality of cell aggregates embedded therein in a predetermined pattern. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type, matrix, and embedding patterns to enable selection of organ printing processes parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Application
    Filed: February 24, 2005
    Publication date: March 20, 2008
    Applicant: The Curators of the Univeristy of Missouri
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov