Patents by Inventor Karsten HARDER

Karsten HARDER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846245
    Abstract: A method for a model-based open-loop and closed-loop control of an internal combustion engine includes the steps of: determining, via a combustion model, injection system setpoint values for controlling injection system actuators, according to a setpoint torque; adapting, during an operation of the internal combustion engine, the combustion model according to a model value, the model value being calculated from a first Gaussian process model for representing a base grid and a second Gaussian process model for representing adaptation data points; determining, by an optimizer, a minimized measure of quality by changing the injection system setpoint values within a prediction horizon, and, in an event that the minimized measure of quality is found, the injection system setpoint values are set as critical for adjusting an operating point of the internal combustion engine; and monitoring the model value in respect of a monotony which is predefined.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: December 19, 2023
    Assignee: Rolls-Royce Solutions GmbH
    Inventors: Daniel Bergmann, Knut Graichen, Karsten Harder, Jens Niemeyer, Jörg Remele
  • Publication number: 20220356852
    Abstract: A method for a model-based open-loop and closed-loop control of an internal combustion engine includes the steps of: determining, via a combustion model, injection system setpoint values for controlling injection system actuators, according to a setpoint torque; adapting, during an operation of the internal combustion engine, the combustion model according to a model value, the model value being calculated from a first Gaussian process model for representing a base grid and a second Gaussian process model for representing adaptation data points; determining, by an optimizer, a minimized measure of quality by changing the injection system setpoint values within a prediction horizon, and, in an event that the minimized measure of quality is found, the injection system setpoint values are set as critical for adjusting an operating point of the internal combustion engine; and monitoring the model value in respect of a monotony which is predefined.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Applicant: Rolls-Royce Solutions GmbH
    Inventors: Daniel Bergmann, Knut Graichen, Karsten Harder, Jens Niemeyer, Jörg Remele
  • Patent number: 11365698
    Abstract: A method for controlling and regulating an internal combustion engine with exhaust gas recirculation, in which an EGR rate is determined by a Kaiman filter from calculated and measured variables of the gas path and from calculated and measured variables of combustion. A method for the model-based control and regulation of an internal combustion engine includes calculating injection system set values for controlling the injection system actuators as a function of a set torque by a combustion model. Gas path set values for controlling the gas path actuators are calculated as a function of an EGR rate by a gas path model. A measure of quality is calculated by an optimizer as a function of the injection system and gas path set values. The measure of quality is minimized by the optimizer by changing the injection system and gas path set values within a prediction horizon.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: June 21, 2022
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Buchholz, Knut Graichen, Karsten Harder, Jens Niemeyer
  • Patent number: 11319888
    Abstract: A method for regulation of an internal combustion engine with an SCR catalytic converter in which the operating point of the engine is predefined by an engine control unit and the operating point of the catalytic converter is predefined by an SCR control unit. An overall system quality measure is calculated by an optimizer in accordance with fed back values of the engine control unit and fed back values of the SCR control unit, by changing the default values for the engine control unit and the SCR control unit, the optimizer minimizes the overall system quality measure for a prediction horizon regarding operating costs. On the basis of the minimized overall system quality measure the optimizer sets the default values for the engine control unit and the default values for the SCR control unit as decisive for setting the operating point of the engine and the catalytic converter.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 3, 2022
    Assignee: Rolls-Royce Solutions GmbH
    Inventors: Knut Graichen, Daniel Bergmann, Roman Geiselhart, Jens Niemeyer, Jörg Remele, Karsten Harder, Tim Späder
  • Publication number: 20210231071
    Abstract: A method for regulation of an internal combustion engine with an SCR catalytic converter in which the operating point of the engine is predefined by an engine control unit and the operating point of the catalytic converter is predefined by an SCR control unit. An overall system quality measure is calculated by an optimizer in accordance with fed back values of the engine control unit and fed back values of the SCR control unit, by changing the default values for the engine control unit and the SCR control unit, the optimizer minimizes the overall system quality measure for a prediction horizon regarding operating costs. On the basis of the minimized overall system quality measure the optimizer sets the default values for the engine control unit and the default values for the SCR control unit as decisive for setting the operating point of the engine and the catalytic converter.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 29, 2021
    Applicant: MTU Friedrichshafen GmbH
    Inventors: Knut Graichen, Daniel Bergmann, Roman Geiselhart, Jens Niemeyer, Jörg Remele, Karsten Harder, Tim Späder
  • Publication number: 20200240344
    Abstract: A method for controlling and regulating an internal combustion engine with exhaust gas recirculation, in which an EGR rate is determined by a Kaiman filter from calculated and measured variables of the gas path and from calculated and measured variables of combustion. A method for the model-based control and regulation of an internal combustion engine includes calculating injection system set values for controlling the injection system actuators as a function of a set torque by a combustion model. Gas path set values for controlling the gas path actuators are calculated as a function of an EGR rate by a gas path model. A measure of quality is calculated by an optimizer as a function of the injection system and gas path set values. The measure of quality is minimized by the optimizer by changing the injection system and gas path set values within a prediction horizon.
    Type: Application
    Filed: July 20, 2018
    Publication date: July 30, 2020
    Inventors: Michael BUCHHOLZ, Knut GRAICHEN, Karsten HARDER, Jens NIEMEYER
  • Patent number: 10669962
    Abstract: A method for predictive open-loop and/or closed-loop control of an internal combustion engine with control variables pursuant to a model of the engine with characterizing variables and a control circuit for the control variables. The control variables are adjusted in an open-loop or closed-loop manner by measuring actual values and specifying target values of the characterizing variables and, optionally, depending on the boundary and/or environmental and/or ageing conditions. The characterizing variables are controlled pursuant to a model of the engine with the characterizing variables and a control circuit with the control variables. The controlling is part of a model-based predictive control, wherein the characterizing variables of the engine model are calculated and the control variables of the engine are adjusted in a predictively controlled manner.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: June 2, 2020
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Buchholz, Knut Graichen, Karsten Harder, Jens Niemeyer, Jörg Remele
  • Publication number: 20180216558
    Abstract: A method for predictive open-loop and/or closed-loop control of an internal combustion engine with control variables pursuant to a model of the engine with characterizing variables and a control circuit for the control variables. The control variables are adjusted in an open-loop or closed-loop manner by measuring actual values and specifying target values of the characterizing variables and, optionally, depending on the boundary and/or environmental and/or ageing conditions. The characterizing variables are controlled pursuant to a model of the engine with the characterizing variables and a control circuit with the control variables. The controlling is part of a model-based predictive control, wherein the characterizing variables of the engine model are calculated and the control variables of the engine are adjusted in a predictively controlled manner.
    Type: Application
    Filed: October 10, 2016
    Publication date: August 2, 2018
    Inventors: Michael BUCHHOLZ, Knut GRAICHEN, Karsten HARDER, Jens NIEMEYER, Jörg REMELE