Patents by Inventor Karsten NEUMANN

Karsten NEUMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240157648
    Abstract: A process chamber housing for an additive manufacturing apparatus with a process chamber (having a bottom, a ceiling, and side walls that jointly enclose a volume of the process chamber), an inert gas inlet in a front wall of the side walls (to provide an inert gas into the process chamber) and an inert gas outlet in a rear wall of the side walls (to release the inert gas out of the process chamber). When the inert gas inlet and the inert gas outlet are positioned at opposite sides of the opening of the housing and face towards each other to establish an inert gas flow in a main flow direction from the inert gas inlet over the opening to the inert gas outlet, the quality of laser beam(s) employed in the additive manufacturing process is improved.
    Type: Application
    Filed: November 6, 2023
    Publication date: May 16, 2024
    Inventors: Birk Hoppe, Karsten Neumann, Tobias Schmithüsen
  • Publication number: 20230405679
    Abstract: An apparatus (10) for producing a three-dimensional work piece (46) by irradiating layers of a raw material powder with electromagnetic or particle radiation comprises a process chamber (16) accommodating a carrier (12) and a powder application device (14) for applying a layer of raw material powder onto the carrier (12). The apparatus (10) further comprises an irradiation unit (26) for selectively irradiating the layer of raw material powder with electromagnetic or particle radiation in accordance with a geometry of a corresponding layer of the work piece (18) to be produced. An absorption device (50) which is adapted to absorb heat radiation emitted upon selectively irradiating the layer of raw material powder with electromagnetic or particle radiation is provided in the process chamber (16) and/or in the irradiation unit (26) at such a position that it is capable of absorbing radiation occurring in an interior of the process chamber (16) and/or in an interior of the irraditation unit (26).
    Type: Application
    Filed: October 25, 2021
    Publication date: December 21, 2023
    Inventors: Vera Gauzer, Daniel Brück, Jonas Prell, Karsten Neumann
  • Publication number: 20220193785
    Abstract: We describe a device for calibrating an irradiation system of an apparatus for producing a three-dimensional workpiece, the irradiation system comprising an irradiation unit for selectively irradiating an irradiation beam onto an irradiation plane, wherein the device comprises: a control unit configured to control the irradiation system to irradiate the irradiation beam onto the irradiation plane, and an optical detection unit coupled to the control unit, wherein the optical detection unit comprises an optical detector and an objective lens for optically detecting a portion of the irradiation plane, wherein the optical detection unit is configured to detect a position of a spot of the irradiation beam on the irradiation plane, wherein the objective lens is adapted to be arranged, with respect to an irradiation beam path of the irradiation beam, between the optical detector and an irradiation beam scanner of the irradiation system, wherein the optical detection unit is configured to detect the position of the
    Type: Application
    Filed: August 27, 2020
    Publication date: June 23, 2022
    Inventors: Karsten Neumann, Arne Neef, Bastian Lampert, Daniel Brueck
  • Patent number: 10325985
    Abstract: A technique comprising: providing a stack of layers defining at least (a) source and drain electrodes, (b) gate electrode, and (c) semiconductor channel of at least one transistor; depositing one or more organic insulating layers over the stack; removing at least part of the stack in one or more selected regions by an ablation technique; depositing conductor material over the stack in at least the one or more ablated regions and one or more border regions immediately surrounding a respective ablated region; and depositing inorganic insulating material over the stack at least in the ablated regions and the border regions to cover the ablated regions and make direct contact with said conductor material in said one or more border regions all around the respective ablated region.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: June 18, 2019
    Assignee: FLEXENABLE LIMITED
    Inventors: Jan Jongman, Anja Wellner, Jens Dienelt, Karsten Neumann, Stephan Riedel
  • Publication number: 20170179231
    Abstract: A technique comprising: providing a stack of layers defining at least (a) source and drain electrodes, (b) gate electrode, and (c) semiconductor channel of at least one transistor; depositing one or more organic insulating layers over the stack; removing at least part of the stack in one or more selected regions by an ablation technique; depositing conductor material over the stack in at least the one or more ablated regions and one or more border regions immediately surrounding a respective ablated region; and depositing inorganic insulating material over the stack at least in the ablated regions and the border regions to cover the ablated regions and make direct contact with said conductor material in said one or more border regions all around the respective ablated region.
    Type: Application
    Filed: July 21, 2015
    Publication date: June 22, 2017
    Applicant: FLEXENABLE LIMITED
    Inventors: Jan JONGMAN, Anja WELLNER, Jens DIENELT, Karsten NEUMANN, Stephan RIEDEL