Patents by Inventor Karthik Sarpatwari

Karthik Sarpatwari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230195624
    Abstract: This document describes apparatuses and techniques for cache memory with randomized eviction. In various aspects, a cache memory randomly selects a cache line for eviction and/or replacement. The cache memory may also support multi-occupancy whereby the cache memory enters data reused from another cache line to replace the data of the randomly evicted cache line. By so doing, the cache memory may operate in a nondeterministic fashion, which may increase a probability of data remaining in the cache memory for subsequent requests.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Sandeep Krishna Thirumala, Lingming Yang, Karthik Sarpatwari, Nevil N. Gajera
  • Publication number: 20230178167
    Abstract: A memory device can include multiple memory cells and a processing device operatively coupled with the memory device to perform operations including grouping the memory cells into a groups based on a metric reflecting an electrical distance of a memory cell from a voltage source, and determining, for each group, a respective share of write operations, wherein the share of write operations is related to an aggregate value of the metric for memory cells of the group. The operations can also include distributing the write operations to each group according to the share of write operations determined for the group.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 8, 2023
    Inventors: Zhongyuan Lu, Karthik Sarpatwari, Nevil N. Gajera
  • Patent number: 11664073
    Abstract: Systems, methods and apparatus to determine, in response to a command to write data into a set of memory cells, a programming mode of a set of memory cell to optimize performance in retrieving the data back from the set of memory cells. For example, based on usages of a memory region containing the memory cell set, a predictive model can be used to identify a combination of an amount of redundant information to be stored into the memory cells in the set and a programming mode of the memory cells to store the redundant information. Increasing the amount of redundant information can increase error recovery capability but increase bit error rate and/or increase time to read. The predictive model is trained to predict the combination to optimize read performance.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: May 30, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Patent number: 11664074
    Abstract: Systems, methods and apparatus to program memory cells to an intermediate state. A first voltage pulse is applied in a first polarity across each respective memory cell among the memory cells to move its threshold voltage in the first polarity to a first voltage region representative of a first value. A second voltage pulse is then applied in a second polarity to further move its threshold voltage in the first polarity to a second voltage region representative of a second value and the intermediate state. A magnitude of the second voltage pulse applied for the memory cells is controlled by increasing the magnitude in increments until the memory cells are sensed to be conductive. Optionally, prior to the first voltage pulse, a third voltage pulse is applied in the second polarity to cancel or reduce a drift in threshold voltages of the respective memory cell.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: May 30, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Nevil N. Gajera, Lingming Yang, Yen Chun Lee, Jessica Chen, Francesco Douglas Verna-Ketel
  • Patent number: 11665880
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a substrate, a conductive plate located over the substrate to couple a ground connection, a data line located between the substrate and the conductive plate, a memory cell, and a conductive line. The memory cell includes a first transistor and a second transistor. The first transistor includes a first region electrically coupled between the data line and the conductive plate, and a charge storage structure electrically separated from the first region. The second transistor includes a second region electrically coupled to the charge storage structure and the data line. The conductive line is electrically separated from the first and second regions and spans across part of the first region of the first transistor and part of the second region of the second transistor and forming a gate of the first and second transistors.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: May 30, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Karthik Sarpatwari, Haitao Liu, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11653489
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a conductive region, a first data line, a second data line, a first memory cell coupled to the first data line and the conductive region, a second memory cell coupled to the second data line and the conductive region, a conductive structure, and a conductive line. The first memory cell includes a first transistor coupled to a second transistor, the first transistor including a first charge storage structure. The second memory cell includes a third transistor coupled to a fourth transistor, the third transistor including a second charge storage structure. The conductive structure is located between and electrically separated from the first and second charge storage structures. The conductive line forms a gate of each of the first, second, third, and fourth transistors.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: May 16, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Haitao Liu, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11631453
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes multiple levels of two-transistor (2T) memory cells vertically arranged above a substrate. Each 2T memory cell includes a charge storage transistor having a gate, a write transistor having a gate, a vertically extending access line, and a single bit line pair. The source or drain region of the write transistor is directly coupled to a charge storage structure of the charge storage transistor. The vertically extending access line is coupled to gates of both the charge storage transistor and the write transistor of 2T memory cells in multiple respective levels of the multiple vertically arranged levels. The vertically extending access line and the single bit line pair are used for both write operations and read operations of each of the 2T memory cells to which they are coupled.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: April 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Haitao Liu, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20230102468
    Abstract: The present disclosure includes apparatuses, methods, and systems for performing refresh operations on memory cells. An embodiment includes a memory having a group of memory cells and one or more additional memory cells whose data state is indicative of whether to refresh the group of memory cells, and circuitry configured to apply a first voltage pulse to the group of memory cells to sense a data state of the memory cells of the group, apply, while the first voltage pulse is applied to the group of memory cells, a second voltage pulse having a greater magnitude than the first voltage pulse to the one or more additional memory cells to sense a data state of the one or more additional memory cells, and determine whether to perform a refresh operation on the group of memory cells based on the sensed data state of the one or more additional memory cells.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Inventors: Karthik Sarpatwari, Lingming Yang, Nevil N. Gajera, John Christopher M. Sancon
  • Patent number: 11616098
    Abstract: An example apparatus includes a three-dimensional (3D) memory array including a sense line and a plurality of vertical stacks. Each respective on of the vertical stacks includes a different respective portion of the sense line, a first memory cell coupled to that portion of the sense line, a second memory cell coupled to that portion of the sense line, a first access line coupled to the first memory cell and a second access line coupled to the second memory cell. The first and second access lines are perpendicular to the sense line.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: March 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Lingming Yang, Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera, Lei Wei
  • Patent number: 11615854
    Abstract: Systems, methods and apparatus to determine a programming mode of a set of memory cells that store an indicator of the programming mode. In response to a command to read the memory cells in a memory device, a first read voltage is applied to the memory cells to identify a first subset of the memory cells that become conductive under the first read voltage. The determination of the first subset is configured as an operation common to different programming modes. Based on whether the first subset of the memory cell includes one or more predefined memory cells, the memory device determines a programming mode of memory cells. Once the programming mode is identified from the common operation, the memory device can further execute the command to determine a data item stored, via the programming mode, in the memory cells.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: March 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Patent number: 11616073
    Abstract: Some embodiments include apparatuses and methods forming the apparatuses. One of the apparatuses includes a first transistor including a first channel region, and a charge storage structure separated from the first channel region; a second transistor including a second channel region formed over the charge storage structure; and a data line formed over and contacting the first channel region and the second channel region, the data line including a portion adjacent the first channel region and separated from the first channel region by a dielectric material.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Eric S. Carman, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy, Richard E Fackenthal, Haitao Liu
  • Publication number: 20230060231
    Abstract: Methods, systems, and devices for dirty write on power off are described. In an example, the described techniques may include writing memory cells of a device according to one or more parameters (e.g., reset current amplitude), where each memory cell is associated with a storage element storing a value based on a material property associated with the storage element. Additionally, the described techniques may include identifying, after writing the memory cells, an indication of power down for the device and refreshing, before the power down of the device, a portion of the memory cells based on identifying the indication of the power down for the device. In some cases, refreshing includes modifying at least one of the one or more parameters for a write operation for the portion of the memory cells.
    Type: Application
    Filed: October 26, 2022
    Publication date: March 2, 2023
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Jessica Chen, Nevil Gajera
  • Publication number: 20230067396
    Abstract: Methods and systems include memory devices with a memory array comprising a plurality of memory cells. The memory devices include a control circuit operatively coupled to the memory array and configured to receive a read request for data and to apply a plurality of read voltages to the memory array based on the read request. The control circuit is further configured to perform a data analysis for a first set of data read based on the application of the plurality of read voltages and to derive a demarcation bias voltage (VDM) based on the data analysis. The control circuit is also configured to apply the VDM to the memory array to read a second set of data.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera, Yen Chun Lee, Ferdinando Bedeschi
  • Publication number: 20230058300
    Abstract: Systems, methods and apparatus to determine a programming mode of a set of memory cells without having bit values stored in the memory cells to include an identifier of the programming mode. During the test of which of the memory cells in the set is in a lowest voltage region, which is a common operation for reading the memory cells programmed in different mode, the statistics of the memory cells found to be in the lowest voltage region can be compared to the known, different behaviors of the memory cell set programmed in different modes. A match with the behavior of one of the modes can be used to identify the matching mode as the programming mode of the set of memory cells.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 23, 2023
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Nevil N. Gajera
  • Publication number: 20230048450
    Abstract: Systems, methods and apparatus to read target memory cells having an associated reference memory cell configured to be representative of drift or changes in the threshold voltages of the target memory cells. The reference cell is programmed to a predetermined threshold level when the target cells are programmed to store data. In response to a command to read the target memory cells, estimation of a drift of the threshold voltage of the reference is performed in parallel with applying an initial voltage pulse to read the target cells. Based on a result of the drift estimation, voltage pulses used to read the target cells can be modified and/or added to account for the drift estimated using the reference cell.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 16, 2023
    Inventors: Karthik Sarpatwari, Nevil N. Gajera, Lingming Yang, John F. Schreck
  • Publication number: 20230030585
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first data line located in a first level of the apparatus; a second data line located in a second level of the apparatus; a first memory cell located in a third level of the apparatus between the first and second levels, the first memory cell including a first transistor coupled to the first data line, and a second transistor coupled between the first data line and a charge storage structure of the first transistor; and a second memory cell located in a fourth level of the apparatus between the first and second levels, the second memory cell including a third transistor coupled to the second data line, and a fourth transistor coupled between the second data line and a charge storage structure of the third transistor, the first transistor coupled in series with the third transistor between the first and second data lines.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 2, 2023
    Inventors: Karthik Sarpatwari, Kamal M. Karda, Durai Vishak Nirmal Ramaswamy, Haitao Liu
  • Publication number: 20230031904
    Abstract: Some embodiments include apparatuses and methods of operating such apparatuses. One of such apparatuses includes a data line, a conductive region, and a memory cell including a first transistor and a second transistor. The first transistor includes a first channel region coupled to the data line and the conductive region, a charge storage structure, and a first gate. The second transistor includes a second channel region coupled to the data line and the charge storage structure, and a second gate. The first gate is electrically separated from the second gate and opposite from the second gate in a direction from the first channel region to the second channel region.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 2, 2023
    Inventors: Eric S. Carman, Durai Vishak Nirmal Ramaswamy, Richard E Fackenthal, Kamal M. Karda, Karthik Sarpatwari, Haitao Liu, Duane R. Mills, Christian Caillat
  • Patent number: 11568952
    Abstract: Methods, systems, and devices for adjustable programming pulses for a multi-level cell are described. A memory device may modify a characteristic of a programming pulse for an intermediate logic state based on a metric of reliability of associated memory cells. The modified characteristic may increase a read window and reverse a movement of a shifted threshold voltage distribution (e.g., by moving the threshold voltage distribution farther from one or more other voltage distributions). The metric of reliability may be determined by performing test writes may be a quantity of cycles of use for the memory cells, a bit error rate, and/or a quantity of reads of the first state. The information associated with the modified second pulse may be stored in fuses or memory cells, or may be implemented by a memory device controller or circuitry of the memory device.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: January 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Xuan-Anh Tran, Nevil N. Gajera, Karthik Sarpatwari, Amitava Majumdar
  • Patent number: 11545194
    Abstract: Methods, systems, and devices for dynamic read voltage techniques are described. In some examples, a memory device may include one or more partitions made up of multiple disjoint subsets of memory arrays. The memory device may receive a read command to read the one or more partitions and enter a drift determination phase. During the drift determination phase, the memory device may concurrently apply a respective voltage of a set of voltages to each disjoint subset and determine a quantity of memory cells in each disjoint subset that have a threshold voltage below the applied voltage. Based on a comparison between the determined quantity of memory cells and a predetermined quantity of memory cells, the memory device may select a voltage from the set of voltages and utilize the selected voltage to read the one or more partitions.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: January 3, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Nevil N. Gajera, Jessica Chen, Lingming Yang
  • Patent number: 11545216
    Abstract: Methods, systems, and devices for dirty write on power off are described. In an example, the described techniques may include writing memory cells of a device according to one or more parameters (e.g., reset current amplitude), where each memory cell is associated with a storage element storing a value based on a material property associated with the storage element. Additionally, the described techniques may include identifying, after writing the memory cells, an indication of power down for the device and refreshing, before the power down of the device, a portion of the memory cells based on identifying the indication of the power down for the device. In some cases, refreshing includes modifying at least one of the one or more parameters for a write operation for the portion of the memory cells.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: January 3, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Karthik Sarpatwari, Fabio Pellizzer, Jessica Chen, Nevil Gajera