Patents by Inventor Karthikeyan Balaraman

Karthikeyan Balaraman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12033835
    Abstract: Embodiments disclosed herein include a modular microwave source array. In an embodiment, a housing assembly for the source array comprises a first conductive layer, wherein the first conductive layer comprises a first coefficient of thermal expansion (CTE), and a second conductive layer over the first conductive layer, wherein the second conductive layer comprises a second CTE that is different than the first CTE. In an embodiment, the housing assembly further comprises a plurality of openings through the housing assembly, where each opening passes through the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Robert Moore, James Carducci, Richard Fovell, Sathya Swaroop Ganta, Karthikeyan Balaraman, Silverst Rodrigues
  • Publication number: 20240035160
    Abstract: An apparatus for rotating a substrate within a deposition chamber is described. The substrate is rotated using a substrate support assembly with a shaft and a susceptor coupled to a top of the shaft. The susceptor and the shaft are coupled together using a cogged feature. The cogged feature includes a plurality of teeth or projections on a coupling portion of the shaft which interlock with an indent disposed on the bottom of the susceptor. A lift pin assembly is further coupled to the shaft and configured to raise and lower a substrate from the susceptor.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Tetsuya ISHIKAWA, Ala MORADIAN, Karthikeyan BALARAMAN, Shashikanth CHENNAKESHAVA
  • Patent number: 11835927
    Abstract: Process recipe data associated a process to be performed for a substrate at a process chamber is provided as input to a trained machine learning model. A set of process recipe settings for the process that minimizes scratching on one or more surfaces of the substrate is determined based on one or more outputs of the machine learning model. The process is performed for the substrate at the process chamber in accordance with the determined set of process recipe settings.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: December 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik B Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Patent number: 11810766
    Abstract: Embodiments of the present disclosure are directed towards a protective multilayer coating for process chamber components exposed to temperatures from about 20° C. to about 300° C. during use of the process chamber. The protective multilayer coating comprises a bond layer and a top layer, the bond layer is formed on a chamber component to reduce the stress between the top layer and the chamber component. The reduced stress decreases or prevents particle shedding from the top layer of the multilayer coating during and after use of the process chamber. The bond layer comprises titanium, titanium nitride, aluminum, or combinations thereof, and the top layer comprises tungsten nitride.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Karthikeyan Balaraman, Sathyanarayana Bindiganavale, Rajasekhar Patibandla, Balamurugan Ramasamy, Kartik Shah, Umesh M. Kelkar, Mats Larsson, Kevin A. Papke, William M. Lu
  • Publication number: 20230167543
    Abstract: One embodiment of the disclosure provides a method of fabricating a chamber component with a coating layer disposed on an interface layer with desired film properties. In one embodiment, a method of fabricating a coating material includes providing a base structure comprising an aluminum or silicon containing material, forming an interface layer on the base structure, wherein the interface layer comprises one or more elements from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and forming a coating layer on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz. In another embodiment, a chamber component includes an interface layer disposed on a base structure, wherein the interface layer is selected from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and a coating layer disposed on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Mats LARSSON, Kevin A. PAPKE, Chirag Shaileshbhai KHAIRNAR, Rajasekhar PATIBANDLA, Karthikeyan BALARAMAN, Balamurugan RAMASAMY, Kartik SHAH, Umesh M. KELKAR
  • Publication number: 20230121513
    Abstract: Process recipe data associated a process to be performed for a substrate at a process chamber is provided as input to a trained machine learning model. A set of process recipe settings for the process that minimizes scratching on one or more surfaces of the substrate is determined based on one or more outputs of the machine learning model. The process is performed for the substrate at the process chamber in accordance with the determined set of process recipe settings.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Kartik B. Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Patent number: 11591689
    Abstract: One embodiment of the disclosure provides a method of fabricating a chamber component with a coating layer disposed on an interface layer with desired film properties. In one embodiment, a method of fabricating a coating material includes providing a base structure comprising an aluminum or silicon containing material, forming an interface layer on the base structure, wherein the interface layer comprises one or more elements from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and forming a coating layer on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz. In another embodiment, a chamber component includes an interface layer disposed on a base structure, wherein the interface layer is selected from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and a coating layer disposed on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mats Larsson, Kevin A. Papke, Chirag Shaileshbhai Khairnar, Rajasekhar Patibandla, Karthikeyan Balaraman, Balamurugan Ramasamy, Kartik Shah, Umesh M. Kelkar
  • Patent number: 11586160
    Abstract: Methods and systems for reducing substrate particle scratching using machine learning are provided. A machine learning model is trained to predict process recipe settings for a substrate temperature control process to be performed for a current substrate at a manufacturing system. First training data and second training data are generated for the machine learning model. The first training data includes historical data associated with prior process recipe settings for a prior substrate temperature control process performed for a prior substrate at a prior process chamber. The second training data is associated with a historical scratch profile of one or more surfaces of the prior substrate after performance of the prior substrate temperature control process according to the prior process recipe settings.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kartik B Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Publication number: 20220413452
    Abstract: Methods and systems for reducing substrate particle scratching using machine learning are provided. A machine learning model is trained to predict process recipe settings for a substrate temperature control process to be performed for a current substrate at a manufacturing system. First training data and second training data are generated for the machine learning model. The first training data includes historical data associated with prior process recipe settings for a prior substrate temperature control process performed for a prior substrate at a prior process chamber. The second training data is associated with a historical scratch profile of one or more surfaces of the prior substrate after performance of the prior substrate temperature control process according to the prior process recipe settings.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 29, 2022
    Inventors: Kartik B. Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Patent number: 11274377
    Abstract: Electroplating system seals may include an annular busbar characterized by an inner annular radius and an outer annular radius. The annular busbar may include a plurality of contact extensions. The seals may include an external seal member characterized by an inner annular radius and an outer annular radius. The external seal member may be vertically aligned with and extend inward of the contact extensions at the inner annular radius of the external seal member. The external seal member may include an interior surface at least partially facing the contact extensions. The seals may also include an internal seal member extending a first distance along the interior surface of the external seal member from the inner annular radius. The internal seal member may include a deformable material configured to support a substrate between the internal seal member and the plurality of contact extensions.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kyle M. Hanson, Manjunatha Vishwanatha Adagoor, Karthikeyan Balaraman, Karthick Vasu, Shailesh Chouriya
  • Patent number: 11239058
    Abstract: Embodiments of the present disclosure provide protective coatings, i.e., diffusion and thermal barrier coatings, for aluminum alloy substrates. In particular, embodiments described herein provide a protective layer stack comprising a tantalum nitride layer disposed on an aluminum alloy substrate and a ceramic layer disposed on the tantalum nitride layer. In some embodiments, the aluminum alloy substrates comprise processing chambers and processing chamber components used in the field of electronic device manufacturing, e.g., semiconductor device manufacturing. In one embodiment, an article includes a substrate, a tantalum nitride layer disposed on the substrate, and a ceramic layer disposed on the tantalum nitride layer.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: February 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Karthikeyan Balaraman, Balamurugan Ramasamy, Kartik Shah, Mats Larsson, Kevin A. Papke, Rajasekhar Patibandla, Sathyanarayana Bindiganavale, Umesh M. Kelkar
  • Publication number: 20210391149
    Abstract: Embodiments disclosed herein include a modular microwave source array. In an embodiment, a housing assembly for the source array comprises a first conductive layer, wherein the first conductive layer comprises a first coefficient of thermal expansion (CTE), and a second conductive layer over the first conductive layer, wherein the second conductive layer comprises a second CTE that is different than the first CTE. In an embodiment, the housing assembly further comprises a plurality of openings through the housing assembly, where each opening passes through the first conductive layer and the second conductive layer.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Philip Allan Kraus, Robert Moore, James Carducci, Richard Fovell, Sathya Swaroop Ganta, Karthikeyan Balaraman, Silverst Rodrigues
  • Publication number: 20200270747
    Abstract: One embodiment of the disclosure provides a method of fabricating a chamber component with a coating layer disposed on an interface layer with desired film properties. In one embodiment, a method of fabricating a coating material includes providing a base structure comprising an aluminum or silicon containing material, forming an interface layer on the base structure, wherein the interface layer comprises one or more elements from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and forming a coating layer on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz. In another embodiment, a chamber component includes an interface layer disposed on a base structure, wherein the interface layer is selected from at least one of Ta, Al, Si, Mg, Y, or combinations thereof, and a coating layer disposed on the interface layer, wherein the coating layer has a molecular structure of SivYwMgxAlyOz.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 27, 2020
    Inventors: Mats LARSSON, Kevin A. PAPKE, Chirag Shaileshbhai KHAIRNAR, Rajasekhar PATIBANDLA, Karthikeyan BALARAMAN, Balamurugan RAMASAMY, Kartik SHAH, Umesh M. KELKAR
  • Publication number: 20200020511
    Abstract: Embodiments of the present disclosure provide protective coatings, i.e., diffusion and thermal barrier coatings, for aluminum alloy substrates. In particular, embodiments described herein provide a protective layer stack comprising a tantalum nitride layer disposed on an aluminum alloy substrate and a ceramic layer disposed on the tantalum nitride layer. In some embodiments, the aluminum alloy substrates comprise processing chambers and processing chamber components used in the field of electronic device manufacturing, e.g., semiconductor device manufacturing. In one embodiment, an article includes a substrate, a tantalum nitride layer disposed on the substrate, and a ceramic layer disposed on the tantalum nitride layer.
    Type: Application
    Filed: May 14, 2019
    Publication date: January 16, 2020
    Inventors: Karthikeyan BALARAMAN, Balamurugan RAMASAMY, Kartik SHAH, Mats LARSSON, Kevin A. PAPKE, Rajasekhar PATIBANDLA, Sathyanarayana BINDIGANAVALE, Umesh M. KELKAR
  • Publication number: 20200013589
    Abstract: Embodiments of the present disclosure are directed towards a protective multilayer coating for process chamber components exposed to temperatures from about 20° C. to about 300° C. during use of the process chamber. The protective multilayer coating comprises a bond layer and a top layer, the bond layer is formed on a chamber component to reduce the stress between the top layer and the chamber component. The reduced stress decreases or prevents particle shedding from the top layer of the multilayer coating during and after use of the process chamber. The bond layer comprises titanium, titanium nitride, aluminum, or combinations thereof, and the top layer comprises tungsten nitride.
    Type: Application
    Filed: May 2, 2019
    Publication date: January 9, 2020
    Inventors: Karthikeyan BALARAMAN, Sathyanarayana BINDIGANAVALE, Rajasekhar PATIBANDLA, Balamurugan RAMASAMY, Kartik SHAH, Umesh M. KELKAR, Mats LARSSON, Kevin A. PAPKE, William M. LU
  • Publication number: 20190323141
    Abstract: Electroplating system seals may include an annular busbar characterized by an inner annular radius and an outer annular radius. The annular busbar may include a plurality of contact extensions. The seals may include an external seal member characterized by an inner annular radius and an outer annular radius. The external seal member may be vertically aligned with and extend inward of the contact extensions at the inner annular radius of the external seal member. The external seal member may include an interior surface at least partially facing the contact extensions. The seals may also include an internal seal member extending a first distance along the interior surface of the external seal member from the inner annular radius. The internal seal member may include a deformable material configured to support a substrate between the internal seal member and the plurality of contact extensions.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 24, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Kyle M. Hanson, Manjunatha Vishwanatha Adagoor, Karthikeyan Balaraman, Karthick Vasu, Shailesh Chouriya