Patents by Inventor Karthikeyan Gunasekaran

Karthikeyan Gunasekaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146314
    Abstract: In an example, a system includes a phase frequency detector (PFD) coupled to a charge pump, and a loop filter coupled to the charge pump. The system also includes a voltage controlled oscillator (VCO) coupled to the loop filter. The system includes a fast Fourier transform (FFT) engine coupled to an output of the VCO, the FFT engine configured to estimate a phase and a magnitude of reference spurs of an input reference signal. The system includes spur correction circuitry coupled to an input of the VCO, the spur correction circuitry configured to correct for the reference spurs of the input reference signal based at least in part on the phase and magnitude of the reference spurs.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Inventors: Karthikeyan GUNASEKARAN, Jagannathan VENKATARAMAN
  • Patent number: 11777513
    Abstract: A spur correction system for a transmit chain having an interleaving multiplexer. In some embodiments, the spur correction system includes a spur sense chain, a correction controller, and a Q path corrector. The interleaving multiplexer combines signals from multiple bands in response to a clock signal. The spur sense chain estimates an error that is in phase with the clock signal (an I-phase error) and an error that is a derivative of the clock signal (a Q-phase error). The correction controller compensates for the estimated I-phase error by injecting an I-phase correction signal into the transmit chain. The Q path corrector compensates for the estimated Q-phase error by selectively connecting one or more capacitors within the interleaving multiplexer.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 3, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Karthikeyan Gunasekaran, Snehasish Roychowdhury, Rakesh Manjunath, Aswath V S, Sthanunathan Ramakrishnan, Sarma Sudareswara Gunturi, Rahul Sharma, Jagannathan Venkataraman, Nagarajan Viswanathan
  • Patent number: 11533068
    Abstract: A radio frequency transmitter includes an upconverter that outputs in-phase (I) and quadrature (Q) signals, a digital timing offset circuit, first and second digital-to-analog converters (DACs), an analog timing offset removal circuit, first and second pulse shapers, and an adder. The digital timing offset circuit introduces a time offset between the I and Q signals. The first and second DACs output analog I and Q signals, respectively, and have first and second clock signals, respectively. The first and second clock signals have the same frequency and are offset relative to each other by the time offset. The analog timing offset removal circuit removes the time offset between the analog I and Q signals. The first and second pulse shapers receive the analog I and Q signals, respectively, and output pulse-shaped I and Q signals. The adder receives the pulse-shaped I and Q signals and outputs an intermediate frequency signal.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: December 20, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahul Sharma, Karthikeyan Gunasekaran, Sarma Sundareswara Gunturi, Ram Narayan Krishna Nama Mony, Jaiganesh Balakrishnan, Sandeep Kesrimal Oswal, Visvesvaraya Pentakota
  • Publication number: 20220239304
    Abstract: A spur correction system for a transmit chain having an interleaving multiplexer. In some embodiments, the spur correction system includes a spur sense chain, a correction controller, and a Q path corrector. The interleaving multiplexer combines signals from multiple bands in response to a clock signal. The spur sense chain estimates an error that is in phase with the clock signal (an I-phase error) and an error that is a derivative of the clock signal (a Q-phase error). The correction controller compensates for the estimated I-phase error by injecting an I-phase correction signal into the transmit chain. The Q path corrector compensates for the estimated Q-phase error by selectively connecting one or more capacitors within the interleaving multiplexer.
    Type: Application
    Filed: November 30, 2021
    Publication date: July 28, 2022
    Inventors: Karthikeyan GUNASEKARAN, Snehasish ROYCHOWDHURY, Rakesh MANJUNATH, Aswath V S, Sthanunathan RAMAKRISHNAN, Sarma Sudareswara GUNTURI, Rahul SHARMA, Jagannathan VENKATARAMAN, Nagarajan VISWANATHAN
  • Patent number: 10425044
    Abstract: A circuit includes first and second operational amplifiers, each including positive and negative inputs and first and second internal nodes. A mixer couples first and second input nodes to the positive and negative inputs of the operational amplifiers. The mixer switches the first and second input nodes between the positive and negative inputs of the first and second operational amplifiers in accordance with clock signals. A first cancellation capacitor couples to the first input node, and a second cancellation capacitor couple to the second input node. First and second switches selectively couple the first cancellation capacitor to the first and second internal nodes, respectively, of the first operational amplifier. Third and fourth switches selectively couple the second cancellation capacitor to the first and second internal nodes, respectively, of the second operational amplifier.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 24, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jagannathan Venkataraman, Eeshan Miglani, Karthikeyan Gunasekaran
  • Patent number: 9906237
    Abstract: A digital-to-analog converter includes an adder having a plurality of inputs and an output coupled to the output of the converter. The converter further includes a plurality of digital-to-analog (DAC) elements, each DAC element has an output coupled to an input of the adder, and each DAC element has a DAC element input. A plurality of comparators have outputs coupled to a DAC element input. A first input of each comparator is coupled to the input of the converter. A second input of each comparator is selectively coupled to one of a predetermined voltage and a pseudo-random bit sequence (PRBS[n]).
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: February 27, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jagannathan Venkataraman, Eeshan Miglani, Karthikeyan Gunasekaran
  • Patent number: 9887702
    Abstract: This disclosure includes an analog-to-digital converter (ADC) including multiple digital-to-analog converter (DAC) elements and multiple comparators, with an output of each of the comparators provided to an input of a different one of the multiple DAC elements. The ADC also includes a first voltage connection provided to each of the multiple comparators and multiple second voltage connections, with a different second voltage connection provided to each of the multiple comparators. The ADC further includes first and second resistor ladders, with the first resistor ladder configured to be switchably coupled to a first voltage supply and the second resistor ladder configured to be switchably coupled to a second voltage supply. Each of the second voltage connections is configured to be switchably coupled to a different one of the nodes in the first resistor ladder and to a different one of the nodes in the second resistor ladder.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: February 6, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Eeshan Miglani, Karthikeyan Gunasekaran
  • Patent number: 9853657
    Abstract: The disclosure provides a delta sigma modulator that includes a first input port and a second input port. These ports receive a differential input signal. A DAC is coupled to the first input port and the second input port, and receives a differential feedback signal and a plurality of selection signals. A loop filter generates a differential filtered signal in response to a differential error signal. The differential error signal is proportional to a difference in the differential input signal and the differential feedback signal. A quantizer generates a quantized output signal in response to the differential filtered signal. A modified DWA block coupled between the quantizer and the DAC, generates the plurality of selection signals in response to a chop clock, a regular clock, the quantized output signal and a plurality of selection index signals. A selection index signal is dependent on previously generated plurality of selection signals.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: December 26, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Eeshan Miglani, Karthikeyan Gunasekaran, Santhosh Kumar Gowdhaman, Shagun Dusad
  • Publication number: 20170222658
    Abstract: The disclosure provides a delta sigma modulator that includes a first input port and a second input port. These ports receive a differential input signal. A DAC is coupled to the first input port and the second input port, and receives a differential feedback signal and a plurality of selection signals. A loop filter generates a differential filtered signal in response to a differential error signal. The differential error signal is proportional to a difference in the differential input signal and the differential feedback signal. A quantizer generates a quantized output signal in response to the differential filtered signal. A modified DWA block coupled between the quantizer and the DAC, generates the plurality of selection signals in response to a chop clock, a regular clock, the quantized output signal and a plurality of selection index signals. A selection index signal is dependent on previously generated plurality of selection signals.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Inventors: Eeshan Miglani, Karthikeyan Gunasekaran, Santhosh Kumar Gowdhaman, Shagun Dusad
  • Patent number: 9716514
    Abstract: The disclosure provides a delta sigma modulator. The delta sigma modulator includes a summer. The summer generates an error signal in response to an input signal and a feedback signal. A loop filter is coupled to the summer and generates a filtered signal in response to the error signal. A quantizer is coupled to the loop filter and generates a quantized output signal in response to the filtered signal. A digital to analog converter (DAC) is coupled to the summer, and generates the feedback signal in response to a plurality of selection signals. A modified data weighted averaging (DWA) block is coupled between the quantizer and the DAC. The modified DWA block receives a clock signal and generates the plurality of selection signals in response to the quantized output signal and a primary coefficient. The primary coefficient varies with the clock signal.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: July 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Eeshan Miglani, Karthikeyan Gunasekaran
  • Patent number: 9660665
    Abstract: The disclosure provides a delta sigma modulator that includes a first input port and a second input port. These ports receive a differential input signal. A DAC is coupled to the first input port and the second input port, and receives a differential feedback signal and a plurality of selection signals. A loop filter generates a differential filtered signal in response to a differential error signal. The differential error signal is proportional to a difference in the differential input signal and the differential feedback signal. A quantizer generates a quantized output signal in response to the differential filtered signal. A modified DWA block coupled between the quantizer and the DAC, generates the plurality of selection signals in response to a chop clock, a regular clock, the quantized output signal and a plurality of selection index signals. A selection index signal is dependent on previously generated plurality of selection signals.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: May 23, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Eeshan Miglani, Karthikeyan Gunasekaran, Santhosh Kumar Gowdhaman, Shagun Dusad
  • Publication number: 20170041019
    Abstract: The disclosure provides a delta sigma modulator that includes a first input port and a second input port. These ports receive a differential input signal. A DAC is coupled to the first input port and the second input port, and receives a differential feedback signal and a plurality of selection signals. A loop filter generates a differential filtered signal in response to a differential error signal. The differential error signal is proportional to a difference in the differential input signal and the differential feedback signal. A quantizer generates a quantized output signal in response to the differential filtered signal. A modified DWA block coupled between the quantizer and the DAC, generates the plurality of selection signals in response to a chop clock, a regular clock, the quantized output signal and a plurality of selection index signals. A selection index signal is dependent on previously generated plurality of selection signals.
    Type: Application
    Filed: August 2, 2016
    Publication date: February 9, 2017
    Inventors: Eeshan MIGLANI, Karthikeyan GUNASEKARAN, Santhosh Kumar GOWDHAMAN, Shagun DUSAD
  • Publication number: 20160344404
    Abstract: The disclosure provides a delta sigma modulator. The delta sigma modulator includes a summer. The summer generates an error signal in response to an input signal and a feedback signal. A loop filter is coupled to the summer and generates a filtered signal in response to the error signal. A quantizer is coupled to the loop filter and generates a quantized output signal in response to the filtered signal. A digital to analog converter (DAC) is coupled to the summer, and generates the feedback signal in response to a plurality of selection signals. A modified data weighted averaging (DWA) block is coupled between the quantizer and the DAC. The modified DWA block receives a clock signal and generates the plurality of selection signals in response to the quantized output signal and a primary coefficient. The primary coefficient varies with the clock signal.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Eeshan MIGLANI, Karthikeyan Gunasekaran