Patents by Inventor Karthikeyan K. Ramasamy
Karthikeyan K. Ramasamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250091036Abstract: Disclosed herein are embodiments of a method and system for converting ethanol to para-xylene. The method also provides a pathway to produce terephthalic acid from biomass-based feedstocks. In some embodiments, the disclosed method produces p-xylene with high selectivity over other aromatics typically produced in the conversion of ethanol to xylenes, such as m-xylene, ethyl benzene, benzene, toluene, and the like. And, in some embodiments, the method facilitates the ability to use ortho/para mixtures of methylbenzyaldehyde for preparing ortho/para xylene product mixtures that are amendable to fractionation to separate the para- and ortho-xylene products thereby providing a pure feedstock of para-xylene that can be used to form terephthalic anhydride and a pure feedstock of ortho-xylene that can be used for other purposes, such as phthalic anhydride.Type: ApplicationFiled: July 27, 2022Publication date: March 20, 2025Applicant: Battelle Memorial InstituteInventors: Karthikeyan K. Ramasamy, Mond Guo
-
Patent number: 11851384Abstract: Disclosed herein are embodiments of a method and system for converting ethanol to para-xylene. The method also provides a pathway to produce terephthalic acid from biomass-based feedstocks. In some embodiments, the disclosed method produces p-xylene with high selectivity over other aromatics typically produced in the conversion of ethanol to xylenes, such as m-xylene, ethyl benzene, benzene, toluene, and the like. And, in some embodiments, the method facilitates the ability to use ortho/para mixtures of methylbenzyaldehyde for preparing ortho/para xylene product mixtures that are amendable to fractionation to separate the para- and ortho-xylene products thereby providing a pure feedstock of para-xylene that can be used to form terephthalic anhydride and a pure feedstock of ortho-xylene that can be used for other purposes, such as phthalic anhydride.Type: GrantFiled: April 5, 2022Date of Patent: December 26, 2023Assignees: Battelle Memorial Institute, Lanzatech, Inc.Inventors: Karthikeyan K. Ramasamy, Mond Guo, Richard Russell Rosin, Joseph Anthony Kocal
-
Publication number: 20230312432Abstract: Disclosed herein are embodiments of a method and system for converting ethanol to para-xylene. The method also provides a pathway to produce terephthalic acid from biomass-based feedstocks. In some embodiments, the disclosed method produces p-xylene with high selectivity over other aromatics typically produced in the conversion of ethanol to xylenes, such as m-xylene, ethyl benzene, benzene, toluene, and the like. And, in some embodiments, the method facilitates the ability to use ortho/para mixtures of methylbenzyaldehyde for preparing ortho/para xylene product mixtures that are amendable to fractionation to separate the para- and ortho-xylene products thereby providing a pure feedstock of para-xylene that can be used to form terephthalic anhydride and a pure feedstock of ortho-xylene that can be used for other purposes, such as phthalic anhydride.Type: ApplicationFiled: June 2, 2023Publication date: October 5, 2023Applicants: Battelle Memorial Institute, LanzaTech, Inc.Inventors: Karthikeyan K. Ramasamy, Mond Guo, Richard Russell Rosin, Joseph Anthony Kocal
-
Publication number: 20230049093Abstract: Disclosed herein are embodiments of a method and system for converting ethanol to para-xylene. The method also provides a pathway to produce terephthalic acid from biomass-based feedstocks. In some embodiments, the disclosed method produces p-xylene with high selectivity over other aromatics typically produced in the conversion of ethanol to xylenes, such as m-xylene, ethyl benzene, benzene, toluene, and the like. And, in some embodiments, the method facilitates the ability to use ortho/para mixtures of methylbenzyaldehyde for preparing ortho/para xylene product mixtures that are amendable to fractionation to separate the para- and ortho-xylene products thereby providing a pure feedstock of para-xylene that can be used to form terephthalic anhydride and a pure feedstock of ortho-xylene that can be used for other purposes, such as phthalic anhydride.Type: ApplicationFiled: April 5, 2022Publication date: February 16, 2023Applicants: Battelle Memorial Institute, LanzaTech, Inc.Inventors: Karthikeyan K. Ramasamy, Mond Guo, Richard Russell Rosin, Joseph Anthony Kocal
-
Patent number: 11565989Abstract: The invention relates to a two-way approach to isolate, recover and upgrade 2,3-Butanediol (2,3-BDO) from fermentation broth. A complete separation and recovery process for 2,3-BDO using acetalization and trans-acetalization sequence. Acetalization with butyraldehyde using heterogeneous catalysts, either Amberlyst-15® or Nafion NR50®, efficiently isolates 2,3-BDO as phase-separated protected dioxolane. The approach provides significant process advantages with easy product recovery and high recyclability of the catalyst. Trans-acetalization of dioxolane with methanol (methanolysis) followed by distillation of acetal, yielded very high purity 2,3-BDO with about 90% isolated yield. Alternatively, dioxolane is used in a process direct to methyl ethyl ketone (MEK) as a BDO synthon allowing for recovery of the aldehyde.Type: GrantFiled: November 3, 2020Date of Patent: January 31, 2023Inventors: Cameron Moore, Trideep Rajale, Karthikeyan K. Ramasamy, Andrew Sutton
-
Patent number: 11325873Abstract: Disclosed herein are embodiments of a method and system for converting ethanol to para-xylene. The method also provides a pathway to produce terephthalic acid from biomass-based feedstocks. In some embodiments, the disclosed method produces p-xylene with high selectivity over other aromatics typically produced in the conversion of ethanol to xylenes, such as m-xylene, ethyl benzene, benzene, toluene, and the like. And, in some embodiments, the method facilitates the ability to use ortho/para mixtures of methylbenzyaldehyde for preparing ortho/para xylene product mixtures that are amendable to fractionation to separate the para- and ortho-xylene products thereby providing a pure feedstock of para-xylene that can be used to form terephthalic anhydride and a pure feedstock of ortho-xylene that can be used for other purposes, such as phthalic anhydride.Type: GrantFiled: July 28, 2021Date of Patent: May 10, 2022Assignees: Battelle Memorial Institute, LanzaTech, Inc.Inventors: Karthikeyan K. Ramasamy, Mond Guo, Richard Russell Rosin, Joseph Anthony Kocal
-
Publication number: 20220135507Abstract: The invention relates to a two-way approach to isolate, recover and upgrade 2,3-Butanediol (2,3-BDO) from fermentation broth. A complete separation and recovery process for 2,3-BDO using acetalization and trans-acetalization sequence. Acetalization with butyraldehyde using heterogeneous catalysts, either Amberlyst-15® or Nafion NR50®, efficiently isolates 2,3-BDO as phase-separated protected dioxolane. The approach provides significant process advantages with easy product recovery and high recyclability of the catalyst. Trans-acetalization of dioxolane with methanol (methanolysis) followed by distillation of acetal, yielded very high purity 2,3-BDO with about 90% isolated yield. Alternatively, dioxolane is used in a process direct to methyl ethyl ketone (MEK) as a BDO synthon allowing for recovery of the aldehyde.Type: ApplicationFiled: November 3, 2020Publication date: May 5, 2022Applicant: U.S. Department of EnergyInventors: Cameron Moore, Trideep Rajale, Karthikeyan K. Ramasamy, Andrew Sutton
-
Patent number: 10745330Abstract: A method and catalyst for forming higher alcohols from lower alcohol feedstocks. In one application a highly selective and stable copper pseudo-single-atom supported on MgO—Al2O3 catalyst is provided which provides ethanol condensation to higher alcohols at ˜50% yields and ˜85% selectivity is demonstrated with stable catalyst lifetime over 500 hours in a continuous flow system. In some applications a Guerbet condensation process is further utilized to yield a higher alcohol at a selectivity of near ˜90%.Type: GrantFiled: July 26, 2018Date of Patent: August 18, 2020Assignee: BATTELLE MEMORIAL INSTITUTEInventors: Karthikeyan K. Ramasamy, Mond F. Guo, Michel J. Gray, Senthil Subramaniam
-
Publication number: 20190031585Abstract: A method and catalyst for forming higher alcohols from lower alcohol feedstocks. In one application a highly selective and stable copper pseudo-single-atom supported on MgO—Al2O3 catalyst is provided which provides ethanol condensation to higher alcohols at ˜50% yields and ˜85% selectivity is demonstrated with stable catalyst lifetime over 500 hours in a continuous flow system. In some applications a Guerbet condensation process is further utilized to yield a higher alcohol at a selectivity of near ˜90%.Type: ApplicationFiled: July 26, 2018Publication date: January 31, 2019Applicant: BATTELLE MEMORIAL INSTITUTEInventors: Karthikeyan K. Ramasamy, Mond F. Guo, Michel J. Gray, Senthil Subramaniam