Patents by Inventor Karthikeyan Ramamurthy

Karthikeyan Ramamurthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9875428
    Abstract: Methods and systems for recovering corrupted/degraded images using approximations obtained from an ensemble of multiple sparse models are disclosed. Sparse models may represent images parsimoniously using elementary patterns from a “dictionary” matrix. Various embodiments of the present disclosure involve simple and computationally efficient dictionary design approach along with low-complexity reconstruction procedure that may use a parallel-friendly table-lookup process. Multiple dictionaries in an ensemble model may be inferred sequentially using greedy forward-selection approach and can incorporate bagging/boosting strategies, taking into account application-specific degradation. Recovery performance obtained using the proposed approaches with image super resolution and compressive recovery can be comparable to or better than existing sparse modeling based approaches, at reduced computational complexity.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 23, 2018
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Karthikeyan Ramamurthy, Jayaraman Thiagarajan, Prasanna Sattigeri, Andreas Spanias
  • Patent number: 9779497
    Abstract: Measuring the number of glomeruli in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. In particular, a recent Magnetic Resonance Imaging (MRI) technique, based on injection of a contrast agent, cationic ferritin, has been effective in identifying glomerular regions in the kidney. In various embodiments, a low-complexity, high accuracy method for obtaining the glomerular count from such kidney MRI images is described. This method employs a patch-based approach for identifying a low-dimensional embedding that enables the separation of glomeruli regions from the rest. By using only a few images marked by the expert for learning the model, the method provides an accurate estimate of the glomerular number for any kidney image obtained with the contrast agent. In addition, the implementation of our method shows that this method is near real-time, and can process about 5 images per second.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 3, 2017
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA, ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jayaraman Jayaraman Thiagarajan, Karthikeyan Ramamurthy, Andreas Spanias, David Frakes
  • Patent number: 9710916
    Abstract: A robust method to automatically segment and identify tumor regions in medical images is extremely valuable for clinical diagnosis and disease modeling. In various embodiments, an efficient algorithm uses sparse models in feature spaces to identify pixels belonging to tumorous regions. By fusing both intensity and spatial location information of the pixels, this technique can automatically localize tumor regions without user intervention. Using a few expert-segmented training images, a sparse coding-based classifier is learned. For a new test image, the sparse code obtained from every pixel is tested with the classifier to determine if it belongs to a tumor region. Particular embodiments also provide a highly accurate, low-complexity procedure for cases when the user can provide an initial estimate of the tumor in a test image.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: July 18, 2017
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA, ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jayaraman Jayaraman Thiagarajan, Karthikeyan Ramamurthy, Andreas Spanias, David Frakes
  • Publication number: 20160012314
    Abstract: Methods and systems for recovering corrupted/degraded images using approximations obtained from an ensemble of multiple sparse models are disclosed. Sparse models may represent images parsimoniously using elementary patterns from a “dictionary” matrix. Various embodiments of the present disclosure involve simple and computationally efficient dictionary design approach along with low-complexity reconstruction procedure that may use a parallel-friendly table-lookup process. Multiple dictionaries in an ensemble model may be inferred sequentially using greedy forward-selection approach and can incorporate bagging/boosting strategies, taking into account application-specific degradation. Recovery performance obtained using the proposed approaches with image super resolution and compressive recovery can be comparable to or better than existing sparse modeling based approaches, at reduced computational complexity.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 14, 2016
    Inventors: Karthikeyan RAMAMURTHY, Jayaraman THIAGARAJAN, Prasanna SATTIGERI, Andreas SPANIAS
  • Publication number: 20160005170
    Abstract: Measuring the number of glomeruli in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. In particular, a recent Magnetic Resonance Imaging (MRI) technique, based on injection of a contrast agent, cationic ferritin, has been effective in identifying glomerular regions in the kidney. In various embodiments, a low-complexity, high accuracy method for obtaining the glomerular count from such kidney MRI images is described. This method employs a patch-based approach for identifying a low-dimensional embedding that enables the separation of glomeruli regions from the rest. By using only a few images marked by the expert for learning the model, the method provides an accurate estimate of the glomerular number for any kidney image obtained with the contrast agent. In addition, the implementation of our method shows that this method is near real-time, and can process about 5 images per second.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Applicant: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on behalf of Ariz
    Inventors: Jayaraman Jayaraman Thiagarajan, Karthikeyan Ramamurthy, Andreas Spanias, David Frakes
  • Publication number: 20160005183
    Abstract: A robust method to automatically segment and identify tumor regions in medical images is extremely valuable for clinical diagnosis and disease modeling. In various embodiments, an efficient algorithm uses sparse models in feature spaces to identify pixels belonging to tumorous regions. By fusing both intensity and spatial location information of the pixels, this technique can automatically localize tumor regions without user intervention. Using a few expert-segmented training images, a sparse coding-based classifier is learned. For a new test image, the sparse code obtained from every pixel is tested with the classifier to determine if it belongs to a tumor region. Particular embodiments also provide a highly accurate, low-complexity procedure for cases when the user can provide an initial estimate of the tumor in a test image.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Applicants: Arizona State University
    Inventors: Jayaraman Jayaraman Thiagarajan, Karthikeyan Ramamurthy, Andreas Spanias, David Frakes