Patents by Inventor KARTIK B. SHAH

KARTIK B. SHAH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835927
    Abstract: Process recipe data associated a process to be performed for a substrate at a process chamber is provided as input to a trained machine learning model. A set of process recipe settings for the process that minimizes scratching on one or more surfaces of the substrate is determined based on one or more outputs of the machine learning model. The process is performed for the substrate at the process chamber in accordance with the determined set of process recipe settings.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: December 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik B Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Publication number: 20230185268
    Abstract: Technologies directed to an eco-efficiency monitoring and exploration platform for semiconductor manufacturing. One method includes receiving, by a processing device, first data indicating an update to a substrate fabrication system having a first configuration of manufacturing equipment and operating to one or more process procedures. The method further includes determining, by the processing device, using the first data with a digital replica, environmental resource data. The digital replica includes a digital reproduction of the substrate fabrication system. The environmental resource usage data indicates an environment resource consumption that corresponds to performing the one or more process procedures by the substrate fabrication system incorporating the update. The method further includes providing, by the processing device, the environmental resource usage data for display on a graphical user interface (GUI).
    Type: Application
    Filed: December 10, 2021
    Publication date: June 15, 2023
    Inventors: Ala Moradian, Umesh Madhav Kelkar, Elizabeth Neville, Orlando Trejo, Sergey Meirovich, Kartik B. Shah, Shreyas Suresh Kher
  • Publication number: 20230121513
    Abstract: Process recipe data associated a process to be performed for a substrate at a process chamber is provided as input to a trained machine learning model. A set of process recipe settings for the process that minimizes scratching on one or more surfaces of the substrate is determined based on one or more outputs of the machine learning model. The process is performed for the substrate at the process chamber in accordance with the determined set of process recipe settings.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Kartik B. Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Patent number: 11586160
    Abstract: Methods and systems for reducing substrate particle scratching using machine learning are provided. A machine learning model is trained to predict process recipe settings for a substrate temperature control process to be performed for a current substrate at a manufacturing system. First training data and second training data are generated for the machine learning model. The first training data includes historical data associated with prior process recipe settings for a prior substrate temperature control process performed for a prior substrate at a prior process chamber. The second training data is associated with a historical scratch profile of one or more surfaces of the prior substrate after performance of the prior substrate temperature control process according to the prior process recipe settings.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kartik B Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Publication number: 20220413452
    Abstract: Methods and systems for reducing substrate particle scratching using machine learning are provided. A machine learning model is trained to predict process recipe settings for a substrate temperature control process to be performed for a current substrate at a manufacturing system. First training data and second training data are generated for the machine learning model. The first training data includes historical data associated with prior process recipe settings for a prior substrate temperature control process performed for a prior substrate at a prior process chamber. The second training data is associated with a historical scratch profile of one or more surfaces of the prior substrate after performance of the prior substrate temperature control process according to the prior process recipe settings.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 29, 2022
    Inventors: Kartik B. Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Patent number: 9111980
    Abstract: Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 18, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David K. Carlson, Michael R. Rice, Kartik B. Shah, Kashif Maqsood, Pravin K. Narwankar
  • Publication number: 20140060433
    Abstract: Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DAVID K. CARLSON, MICHAEL R. RICE, KARTIK B. SHAH, KASHIF MAQSOOD, PRAVIN K. NARWANKAR
  • Publication number: 20140060434
    Abstract: Apparatus for use in a substrate processing chamber are provided herein. In some embodiments, a gas injector for use in a process chamber may include first set of gas orifices configured to provide a jet flow of a first process gas into the process chamber, and a second set of gas orifices configured to provide a laminar flow of a second process gas into the process chamber, wherein the first set of gas orifices are disposed between at least two gas orifices of the second set of gas orifices.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DAVID K. CARLSON, MICHAEL R. RICE, KARTIK B. SHAH, KASHIF MAQSOOD, PRAVIN K. NARWANKAR
  • Publication number: 20140060435
    Abstract: Apparatus for use in an inline substrate processing tool are provided herein. In some embodiments, a door for use in an inline substrate processing tool between a first and a second substrate processing module coupled to one another in a linear arrangement may include a reflective body disposed between two cover plates of substantially transparent material, configured to reflect light and heat energy into each of the at first and second substrate processing modules, wherein the door is selectively movable, via an actuator coupled to the door, between an open position that fluidly couples the first and second substrate processing modules to a closed position that isolates the first substrate processing module from the second substrate processing module.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DAVID K. CARLSON, MICHAEL R. RICE, KARTIK B. SHAH, KASHIF MAQSOOD, PRAVIN K. NARWANKAR