Patents by Inventor Kartik Santhanam

Kartik Santhanam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090280628
    Abstract: In a plasma immersion ion implantation process, the thickness of a pre-implant chamber seasoning layer is increased (to permit implantation of a succession of wafers without replacing the seasoning layer) without loss of wafer clamping electrostatic force due to increased seasoning layer thickness. This is accomplished by first plasma-discharging residual electrostatic charge from the thick seasoning layer. The number of wafers which can be processed using the same seasoning layer is further increased by fractionally supplementing the seasoning layer after each wafer is processed, which may be followed by a brief plasma discharging of the supplemented seasoning before processing the next wafer.
    Type: Application
    Filed: July 15, 2009
    Publication date: November 12, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Manoj Vellaikal, Kartik Santhanam, Yen B. Ta, Martin A. Hilkene, Matthew D. Scotney-Castle, Canfeng Lai, Peter I. Porshnev, Majeed A. Foad
  • Publication number: 20090215250
    Abstract: In plasma immersion ion implantation of a polysilicon gate, a hydride of the dopant is employed as a process gas to avoid etching the polysilicon gate, and sufficient argon gas is added to reduce added particle count to below 50 and to reduce plasma impedance fluctuations to 5% or less.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 27, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Kartik Santhanam, Manoj Vellaikal, Peter I. Porshnev, Majeed A. Foad
  • Publication number: 20090215251
    Abstract: In a plasma immersion ion implantation process, the thickness of a pre-implant chamber seasoning layer is increased (to permit implantation of a succession of wafers without replacing the seasoning layer) without loss of wafer clamping electrostatic force due to increased seasoning layer thickness. This is accomplished by first plasma-discharging residual electrostatic charge from the thick seasoning layer. The number of wafers which can be processed using the same seasoning layer is further increased by fractionally supplementing the seasoning layer after each wafer is processed, which may be followed by a brief plasma discharging of the supplemented seasoning before processing the next wafer.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 27, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Manoj Vellaikal, Kartik Santhanam, Yen B. Ta, Martin A. Hilkene, Matthew D. Scotney-Castle, Canfeng Lai, Peter I. Porshnev, Majeed A. Foad
  • Publication number: 20090162996
    Abstract: A method and apparatus for removing excess dopant from a doped substrate is provided. In one embodiment, a substrate is doped by surfaced deposition of dopant followed by formation of a capping layer and thermal diffusion drive-in. A reactive etchant mixture is provided to the process chamber, with optional plasma, to etch away the capping layer and form volatile compounds by reacting with excess dopant. In another embodiment, a substrate is doped by energetic implantation of dopant. A reactive gas mixture is provided to the process chamber, with optional plasma, to remove excess dopant adsorbed on the surface and high-concentration dopant near the surface by reacting with the dopant to form volatile compounds. The reactive gas mixture may be provided during thermal treatment, or it may be provided before or after at temperatures different from the thermal treatment temperature. The volatile compounds are removed.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Kartik Ramaswamy, Kenneth S. Collins, Biagio Gallo, Hiroji Hanawa, Majeed A. Foad, Martin A. Hilkene, Kartik Santhanam, Matthew D. Scotney-Castle
  • Publication number: 20080153271
    Abstract: A method of preventing toxic gas formation after an implantation process is disclosed. Certain dopants, when implanted into films disposed on a substrate, may react when exposed to moisture to form a toxic gas and/or a flammable gas. By in-situ exposing the doped film to an oxygen containing compound, dopant that is shallowly implanted into the layer stack reacts to form a dopant oxide, thereby reducing potential toxic gas and/or flammable gas formation. Alternatively, a capping layer may be formed in-situ over the implanted film to reduce the potential generation of toxic gas and/or flammable gas.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 26, 2008
    Inventors: Majeed A. Foad, Manoj Vellaikal, Kartik Santhanam