Patents by Inventor Kartik Sivaramakrishnan

Kartik Sivaramakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220051337
    Abstract: The traditional Markowitz mean-variance-optimization (MVO) framework that uses the standard deviation of the possible portfolio returns as a measure of risk does not accurately measure the risk of multi-asset class portfolios whose return distributions are non-Gaussian and asymmetric. A scenario-based conditional value-at-risk (CVaR) approach for minimizing the downside risk of a multi-asset class portfolio is addressed that uses Monte-Carlo simulations to generate the asset return scenarios. These return scenarios are incorporated into a modified Rockafellar-Uryasev based convex programming formulation to generate an optimized hedge. One example addresses hedging in an equity portfolio with options. Testing shows that a hierarchical CVaR approach generates portfolios with better predicted worst case loss, downside risk, standard deviation, and skew.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventor: Kartik Sivaramakrishnan
  • Patent number: 11195232
    Abstract: The traditional Markowitz mean-variance-optimization (MVO) framework that uses the standard deviation of the possible portfolio returns as a measure of risk does not accurately measure the risk of multi-asset class portfolios whose return distributions are non-Gaussian and asymmetric. A scenario-based conditional value-at-risk (CVaR) approach for minimizing the downside risk of a multi-asset class portfolio is addressed that uses Monte-Carlo simulations to generate the asset return scenarios. These return scenarios are incorporated into a modified Rockafellar-Uryasev based convex programming formulation to generate an optimized hedge. One example addresses hedging in an equity portfolio with options. Testing shows that a hierarchical CVaR approach generates portfolios with better predicted worst case loss, downside risk, standard deviation, and skew.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 7, 2021
    Assignee: Axioma, Inc.
    Inventor: Kartik Sivaramakrishnan
  • Publication number: 20210110479
    Abstract: The traditional Markowitz mean-variance-optimization (MVO) framework that uses the standard deviation of the possible portfolio returns as a measure of risk does not accurately measure the risk of multi-asset class portfolios whose return distributions are non-Gaussian and asymmetric. A scenario-based conditional value-at-risk (CVaR) approach for minimizing the downside risk of a multi-asset class portfolio is addressed that uses Monte-Carlo simulations to generate the asset return scenarios. These return scenarios are incorporated into a modified Rockafellar-Uryasev based convex programming formulation to generate an optimized hedge. One example addresses hedging in an equity portfolio with options. Testing shows that a hierarchical CVaR approach generates portfolios with better predicted worst case loss, downside risk, standard deviation, and skew.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 15, 2021
    Inventor: Kartik Sivaramakrishnan
  • Publication number: 20170323385
    Abstract: The traditional Markowitz mean-variance-optimization (MVO) framework that uses the standard deviation of the possible portfolio returns as a measure of risk does not accurately measure the risk of multi-asset class portfolios whose return distributions are non-Gaussian and asymmetric. A scenario-based conditional value-at-risk (CVaR) approach for minimizing the downside risk of a multi-asset class portfolio is addressed that uses Monte-Carlo simulations to generate the asset return scenarios. These return scenarios are incorporated into a modified Rockafellar-Uryasev based convex programming formulation to generate an optimized hedge. One example addresses hedging in an equity portfolio with options. Testing shows that a hierarchical CVaR approach generates portfolios with better predicted worst case loss, downside risk, standard deviation, and skew.
    Type: Application
    Filed: September 29, 2016
    Publication date: November 9, 2017
    Inventor: Kartik Sivaramakrishnan