Patents by Inventor Kartik Sridharan

Kartik Sridharan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11057101
    Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. The first beam pattern covers a first geographical area. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern. A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, a plurality of user equipment (UEs) based on the generated beamforming coefficients and the received first beam of input RF signals.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: July 6, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11050482
    Abstract: An active repeater device including a first antenna array, a controller, and one or more secondary sectors receives or transmits a first beam of input RF signals from or to, respectively, a first base station operated by a first service provider and a second beam of input RF signals from or to, respectively, a second base station operated by a second service provider. A controller assigns a first beam setting to a first group of customer premises equipment (CPEs) and a second beam setting to a second group of CPEs, based on one or more corresponding signal parameters associated with the each corresponding group of CPEs. A second antenna array of the second RH unit concurrently transmits or received a first beam of output RF signals to or from the first group of CPEs and a second beam of output RF signals to the second group of CPEs.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: June 29, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20210167843
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Sam GHARAVI, Ahmadreza ROFOUGARAN, Michael BOERS, Seunghwan YOON, Kartik SRIDHARAN, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN
  • Patent number: 11026100
    Abstract: A system, in an active reflector device, adjusts a first amplification gain of each of a plurality of radio frequency (RF) signals received at a receiver front-end from a first equipment via a first radio path of an NLOS radio path. A first phase shift is performed on each of the plurality of RF signals with the adjusted first amplification gain. A combination of the plurality of first phase-shifted RF signals is split at a transmitter front-end. A second phase shift on each of the split first plurality of first phase-shifted RF signals is performed. A second amplification gain of each of the plurality of second phase-shifted RF signals is adjusted.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: June 1, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11018751
    Abstract: An active repeater device including a first antenna array, a controller, and one or more secondary sectors receives or transmits a first beam of input RF signals from or to, respectively, a first base station operated by a first service provider and a second beam of input RF signals from or to, respectively, a second base station operated by a second service provider. A controller assigns a first beam setting to a first group of customer premises equipment (CPEs) and a second beam setting to a second group of CPEs, based on one or more corresponding signal parameters associated with the each corresponding group of CPEs. A second antenna array of the second RH unit concurrently transmits or received a first beam of output RF signals to or from the first group of CPEs and a second beam of output RF signals to the second group of CPEs.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: May 25, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11018752
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: May 25, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10979129
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: April 13, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10944467
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: March 9, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10916861
    Abstract: An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 9, 2021
    Assignee: MOVANDI CORPORATION
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10917126
    Abstract: An outphasing calibration method in an outphasing calibration RF transmitter comprises detection of differences of a first plurality of signal characteristics of a first plurality of amplified RF signals across at least a transmitter antenna and a plurality of load impedances. The first plurality of amplified RF signals corresponds to a first plurality of constant-envelope signals. Accordingly, at least a generation of a second plurality of constant-envelope signals and at least one signal characteristic of each of a second plurality of constant-envelope RF signals on a plurality of transmission paths are controlled. At least one of a first calibration or a second calibration of a second plurality of signal characteristics of the second plurality of constant-envelope signals is executed based on the controlled generation of the second plurality of constant-envelope signals and the at least one controlled signal characteristic of each of the second plurality of constant-envelope RF signals.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 9, 2021
    Assignee: MOVANDI CORPORATION
    Inventors: Farid Shirinfar, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Stephen Wu, Maryam Rofougaran
  • Publication number: 20210028555
    Abstract: An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20210021402
    Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 21, 2021
    Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
  • Patent number: 10879622
    Abstract: An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 29, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10879944
    Abstract: An outphasing calibration method in an outphasing calibration RF transmitter comprises detection of differences of a first plurality of signal characteristics of a first plurality of amplified RF signals across at least a transmitter antenna and a plurality of load impedances. The first plurality of amplified RF signals corresponds to a first plurality of constant-envelope signals. Accordingly, at least a generation of a second plurality of constant-envelope signals and at least one signal characteristic of each of a second plurality of constant-envelope RF signals on a plurality of transmission paths are controlled. At least one of a first calibration or a second calibration of a second plurality of signal characteristics of the second plurality of constant-envelope signals is executed based on the controlled generation of the second plurality of constant-envelope signals and the at least one controlled signal characteristic of each of the second plurality of constant-envelope RF signals.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 29, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Farid Shirinfar, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Stephen Wu, Maryam Rofougaran
  • Publication number: 20200395682
    Abstract: Provided is an apparatus including a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Application
    Filed: August 27, 2020
    Publication date: December 17, 2020
    Inventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10862559
    Abstract: A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 8, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10840954
    Abstract: An outphasing calibration method in an outphasing calibration RF transmitter comprises detection of differences of a first plurality of signal characteristics of a first plurality of amplified RF signals across at least a transmitter antenna and a plurality of load impedances. The first plurality of amplified RF signals corresponds to a first plurality of constant-envelope signals. Accordingly, at least a generation of a second plurality of constant-envelope signals and at least one signal characteristic of each of a second plurality of constant-envelope RF signals on a plurality of transmission paths are controlled. At least one of a first calibration or a second calibration of a second plurality of signal characteristics of the second plurality of constant-envelope signals is executed based on the controlled generation of the second plurality of constant-envelope signals and the at least one controlled signal characteristic of each of the second plurality of constant-envelope RF signals.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 17, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Farid Shirinfar, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Stephen Wu, Maryam Rofougaran
  • Patent number: 10826584
    Abstract: A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: November 3, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20200343963
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Sam GHARAVI, Ahmadreza ROFOUGARAN, Michael BOERS, Seunghwan YOON, Kartik SRIDHARAN, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN
  • Publication number: 20200343953
    Abstract: A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Kartik SRIDHARAN, Ahmadreza ROFOUGARAN, Michael BOERS, Seunghwan YOON, Sam GHARAVI, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN