Patents by Inventor Karun D. Naga

Karun D. Naga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190183556
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda McMullin, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vicenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Publication number: 20190183572
    Abstract: Microwave catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a microwave transmission element to a renal artery via an intravascular path. Renal neuromodulation may be achieved via dielectric heating in the presence of microwave irradiation that modulates neural fibers that contribute to renal function or alters vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: Karun D. Naga, Roman Turovskiy, Denise Zarins, Mark Gelfand, Arye Rosen
  • Patent number: 10188445
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: January 29, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda Francis, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Patent number: 10182865
    Abstract: Microwave catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a microwave transmission element to a renal artery via an intravascular path. Renal neuromodulation may be achieved via dielectric heating in the presence of microwave irradiation that modulates neural fibers that contribute to renal function or alters vascular structures that feed or perfuse the neural fibers.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: January 22, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Karun D. Naga, Roman Turovskiy, Denise Zarins, Mark Gelfand, Arye Rosen
  • Patent number: 10004550
    Abstract: Catheter apparatuses, systems, and methods for cryogenically modulating neural structures of the renal plexus by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a cryo-applicator to a renal artery via an intravascular path. Cryogenic renal neuromodulation may be achieved via application of cryogenic temperatures to modulate neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: June 26, 2018
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Eric Ryba, Naomi Buckley, Benjamin J. Clark, Danny Donovan, Luke Hughes, Brian Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Roman Turovskiy, Lana Wooley, Denise Zarins, Mark Gelfand, Mark S. Leung
  • Publication number: 20170056087
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: August 5, 2016
    Publication date: March 2, 2017
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda McMullin, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vicenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Publication number: 20170007325
    Abstract: Microwave catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a microwave transmission element to a renal artery via an intravascular path. Renal neuromodulation may be achieved via dielectric heating in the presence of microwave irradiation that modulates neural fibers that contribute to renal function or alters vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: September 9, 2016
    Publication date: January 12, 2017
    Inventors: Karun D. Naga, Roman Turovskiy, Denise Zarins, Mark Gelfand, Arye Rosen
  • Patent number: 9439708
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: September 13, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins, Michael Turovskiy
  • Publication number: 20160038212
    Abstract: Catheter apparatuses, systems, and methods for cryogenically modulating neural structures of the renal plexus by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a cryo-applicator to a renal artery via an intravascular path. Cryogenic renal neuromodulation may be achieved via application of cryogenic temperatures to modulate neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: July 15, 2015
    Publication date: February 11, 2016
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Eric Ryba, Naomi Buckley, Benjamin J. Clark, Danny Donovan, Luke Hughes, Brian Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Roman Turovskiy, Lana Wooley, Denise Zarins, Mark Gelfand, Mark S. Leung
  • Patent number: 9060755
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: June 23, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Micheal Moriarty, Karun D. Naga, Fiachra Sweeney, Vincenzo Tilotta, Ronan Wood, Lana Woolley, Denise Zarins, Mark S. Leung, Mark Gelfand, Barry Mullins
  • Patent number: 9060754
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment includes an elongated shaft and a cooling assembly at a distal portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site within or otherwise proximate a renal artery. The cryotherapeutic device can further include a supply lumen configured to carry liquid refrigerant toward the cooling assembly. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: June 23, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Patent number: 8945107
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Francesco Piccagli, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20120150267
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: October 23, 2011
    Publication date: June 14, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l
    Inventors: Naomi Buckley, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Micheal Moriarty, Karun D. Naga, Fiachra Sweeney, Vincenzo Tilotta, Ronan Wood, Lana Woolley, Denise Zarins, Mark S. Leung, Mark Gelfand, Barry Mullins
  • Publication number: 20120136418
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: October 23, 2011
    Publication date: May 31, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20120136344
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: October 23, 2011
    Publication date: May 31, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20120136417
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: October 23, 2011
    Publication date: May 31, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Francesco Piccagli, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20120130360
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: October 23, 2011
    Publication date: May 24, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins, Michael Turovskiy
  • Publication number: 20120116486
    Abstract: Microwave catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a microwave transmission element to a renal artery via an intravascular path. Renal neuromodulation may be achieved via dielectric heating in the presence of microwave irradiation that modulates neural fibers that contribute to renal function or alters vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 10, 2012
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Karun D. Naga, Roman Turovskiy, Denise Zarins, Mark Gelfand, Arye Rosen
  • Publication number: 20120089047
    Abstract: Catheter apparatuses, systems, and methods for cryogenically modulating neural structures of the renal plexus by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a cryo-applicator to a renal artery via an intravascular path. Cryogenic renal neuromodulation may be achieved via application of cryogenic temperatures to modulate neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: August 5, 2011
    Publication date: April 12, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Eric Ryba, Naomi Buckley, Benjamin J. Clark, Danny Donovan, Luke Hughes, Brian Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Roman Turovskiy, Lana Wooley, Denise Zarins, Mark Gelfand, Mark Leung
  • Publication number: 20110200171
    Abstract: The present disclosure describes methods and apparatus for renal neuromodulation via stereotactic radiotherapy for the treatment of hypertension, heart failure, chronic kidney disease, diabetes, insulin resistance, metabolic disorder or other ailments. Renal neuromodulation may be achieved by locating renal nerves and then utilizing stereotactic radiotherapy to expose the renal nerves to a radiation dose sufficient to reduce neural activity. A neural location element may be provided for locating target renal nerves, and a stereotactic radiotherapy system may be provided for exposing the located renal nerves to a radiation dose sufficient to reduce the neural activity, with reduced or minimized radiation exposure in adjacent tissue. Renal nerves may be located and targeted at the level of the ganglion and/or at postganglionic positions, as well as at pre-ganglionic positions.
    Type: Application
    Filed: January 19, 2011
    Publication date: August 18, 2011
    Applicant: Ardian, Inc.
    Inventors: Robert J. Beetel, Neil C. Barman, Benjamin J. Clark, Paul Friedrichs, Kenneth J. Michlitsch, Karun D. Naga, Andrew Wu, Denise Zarins