Patents by Inventor Kasey Otho Greenland

Kasey Otho Greenland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120167
    Abstract: As an x-ray tube expands and contracts during heating and cooling, its hermetic seal can be damaged. A more robust hermetic seal, particularly as the x-ray tube is heated and cooled, is desirable. The x-ray tube described herein can include a proximal-housing 13 and a distal-housing 14, which can be connected to each other by an interface-ring 15 for improved hermetic seal. Added x-ray tube weight, of material used for blocking x-rays, can make it difficult to transport the x-ray tube. Reducing this weight is desirable. A maximum outer diameter Dp of the proximal-housing 13 can be greater than a maximum outer diameter Dd of the distal-housing 14, for improved blocking of x-rays. This diameter difference can allow improved x-ray shielding with less material.
    Type: Application
    Filed: September 11, 2023
    Publication date: April 11, 2024
    Inventors: Kasey Otho GREENLAND, Todd S. PARKER
  • Publication number: 20240112877
    Abstract: X-rays can be used for material identification. X-ray beam purity, target adhesion the x-ray window, and a robust hermetic seal of the x-ray window are useful. To achieve these objectives, a target 17 can be mounted by an adhesion-layer 16 on the x-ray window. The adhesion-layer 16 can include chromium. A sealing-layer 13 can seal the x-ray window to a flange 19. Material of the sealing-layer 13 can be different from material of the adhesion-layer 16. There can be a gap 21 between the flange 19 and the target 17. There can be a conductive-layer 18 on the x-ray window 14 in the gap 21. A thickness Ts of the adhesion-layer 16 between the sealing-layer 13 and the x-ray window 14 can be different than a thickness Tt of the adhesion-layer 16 between the target 17 and the x-ray window 14.
    Type: Application
    Filed: September 5, 2023
    Publication date: April 4, 2024
    Inventors: Kasey Otho GREENLAND, Michael S. ALMOND, Todd S. PARKER
  • Publication number: 20240090108
    Abstract: A monolithic housing for an x-ray source can wrap at least partially around a power supply and an x-ray tube. The monolithic housing can include Al, Ca, Cu, Fe, Mg, Mn, Ni, Si, Sr, Zn, or combinations thereof. Mg can be a major component of the monolithic housing. The monolithic housing can be formed by injection molding. The monolithic housing can provide one or more of the following advantages: (a) light weight (for easier transport), (b) high electrical conductivity (to protect the user from electrical shock), (c) high thermal conductivity (to remove heat generated during use), (d) corrosion resistance, (e) high strength, and (f) high electromagnetic interference shielding (to shield power supply components from external noise, to shield other electronic components from power supply noise, or both).
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Inventors: Kasey Otho Greenland, Dan Paas
  • Publication number: 20240021400
    Abstract: A planar filament for an x-ray tube can have a different cross-sectional area at different locations. In regions of smaller cross-sectional area, there can be higher current density, and thus increased heating and higher temperature of the wire. In regions of larger cross-sectional area, there can be lower current density, and thus decreased heating of the wire. Regions of larger cross-sectional area can also be stronger, thus reducing early filament failures. Wider regions can have increased area for electron emission. By adjusting the cross-sectional area and width of the wire at different locations, electron emission can be largely confined to a center of the filament, and filament life can increase.
    Type: Application
    Filed: June 12, 2023
    Publication date: January 18, 2024
    Inventors: Kasey Otho GREENLAND, Todd S. PARKER
  • Patent number: 11864301
    Abstract: A monolithic housing for an x-ray source can wrap at least partially around a power supply and an x-ray tube. The monolithic housing can include Al, Ca, Cu, Fe, Mg, Mn, Ni, Si, Sr, Zn, or combinations thereof. Mg can be a major component of the monolithic housing. The monolithic housing can be formed by injection molding. The monolithic housing can provide one or more of the following advantages: (a) light weight (for easier transport), (b) high electrical conductivity (to protect the user from electrical shock), (c) high thermal conductivity (to remove heat generated during use), (d) corrosion resistance, (e) high strength, and (f) high electromagnetic interference shielding (to shield power supply components from external noise, to shield other electronic components from power supply noise, or both).
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: January 2, 2024
    Assignee: Moxtek, Inc.
    Inventors: Kasey Otho Greenland, Dan Paas
  • Publication number: 20230282438
    Abstract: An x-ray tube can include an x-ray window sealed to a mount. An inner-collimator can be adjacent to, but not sealed to, the x-ray window. The inner-collimator can be sandwiched between the x-ray window and an insulating-layer. The insulating-layer can span an inner-collimator-aperture of the inner-collimator, forming an isolated cavity at the inner-collimator-aperture. Walls of the cavity can include the x-ray window, the inner-collimator, and the insulating-layer. The x-ray tube can have a light weight, can block x-rays in undesirable directions, and can shape the x-ray beam.
    Type: Application
    Filed: February 2, 2023
    Publication date: September 7, 2023
    Inventors: Kasey Otho Greenland, Todd S. Parker, Rick Steck
  • Publication number: 20230274904
    Abstract: An x-ray tube 10 can have (a) an enclosure electrically-insulating a cathode 11 from an anode 12; (b) a coating-ring 18 on an inner-face of the enclosure, the coating-ring 18 encircling a longitudinal-axis 16 of the enclosure; and (c) an interruption-ring 19 located at the inner-face of the enclosure at a different location than the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different location along the longitudinal-axis 16 with respect to the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different radius from the longitudinal-axis 16 than the coating-ring 18. The coating-ring 18 and the interruption-ring 19 can reduce uneven electrical charge build-up on the inner-face of the enclosure, and can protect the triple-point.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Todd S. PARKER, Kasey Otho GREENLAND
  • Patent number: 11728122
    Abstract: Electrons can rebound from an x-ray tube target, causing electrical-charge build-up on an inside of the x-ray tube. The charge build-up can increase voltage gradients inside of the x-ray tube, resulting in arcing failure of the x-ray tube. Also, the electrical charge can build unevenly on internal walls of the x-ray tube, causing an undesirable shift of the electron-beam. An x-ray tube (10 or 20) with multiple protrusions (19) on an interior wall of a drift-tube (18) can reduce this electrical-charge build-up. The protrusions (19) can reflect stray electrons back to the anode target (14), thus suppressing backscatter. Each protrusion (19) can have a peak (19p) extending into the hole (18h), and receding to a base (19b) farther from the electron-beam, on an entry-side (19en) nearest the drift-tube-entry (18en) and on an exit-side (19ex) nearest the drift-tube-exit (18ex).
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: August 15, 2023
    Assignee: Moxtek, Inc.
    Inventor: Kasey Otho Greenland
  • Publication number: 20230254962
    Abstract: A monolithic housing for an x-ray source can wrap at least partially around a power supply and an x-ray tube. The monolithic housing can include Al, Ca, Cu, Fe, Mg, Mn, Ni, Si, Sr, Zn, or combinations thereof. Mg can be a major component of the monolithic housing. The monolithic housing can be formed by injection molding. The monolithic housing can provide one or more of the following advantages: (a) light weight (for easier transport), (b) high electrical conductivity (to protect the user from electrical shock), (c) high thermal conductivity (to remove heat generated during use), (d) corrosion resistance, (e) high strength, and (f) high electromagnetic interference shielding (to shield power supply components from external noise, to shield other electronic components from power supply noise, or both).
    Type: Application
    Filed: April 12, 2023
    Publication date: August 10, 2023
    Inventors: Kasey Otho Greenland, Dan Paas
  • Patent number: 11688578
    Abstract: An x-ray tube 10 can have (a) an enclosure electrically-insulating a cathode 11 from an anode 12; (b) a coating-ring 18 on an inner-face of the enclosure, the coating-ring 18 encircling a longitudinal-axis 16 of the enclosure; and (c) an interruption-ring 19 located at the inner-face of the enclosure at a different location than the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different location along the longitudinal-axis 16 with respect to the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different radius from the longitudinal-axis 16 than the coating-ring 18. The coating-ring 18 and the interruption-ring 19 can reduce uneven electrical charge build-up on the inner-face of the enclosure, and can protect the triple-point.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: June 27, 2023
    Assignee: Moxtek, inc.
    Inventors: Todd S. Parker, Kasey Otho Greenland
  • Patent number: 11659645
    Abstract: A monolithic housing for an x-ray source can wrap at least partially around a power supply and an x-ray tube. The monolithic housing can include Al, Ca, Cu, Fe, Mg, Mn, Ni, Si, Sr, Zn, or combinations thereof. Mg can be a major component of the monolithic housing. The monolithic housing can be formed by injection molding. The monolithic housing can provide one or more of the following advantages: (a) light weight (for easier transport), (b) high electrical conductivity (to protect the user from electrical shock), (c) high thermal conductivity (to remove heat generated during use), (d) corrosion resistance, (e) high strength, and (f) high electromagnetic interference shielding (to shield power supply components from external noise, to shield other electronic components from power supply noise, or both).
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: May 23, 2023
    Assignee: Moxtek, Inc.
    Inventors: Kasey Otho Greenland, Dan Paas
  • Publication number: 20220406557
    Abstract: A collimator for an x-ray tube can be a monolithic, integral structure. The collimator can include a proximal-end closest to a cathode and a distal-end farthest from the cathode. The proximal-end can adjoin a vacuum inside of the x-ray tube. The distal-end can adjoin the air. The collimator can include an aperture extending therethrough. An x-ray window can be mounted across the aperture. The aperture can include a collimation-region between the x-ray window and the distal-end, and a drift-region between the x-ray window and the proximal-end. X-rays can be generated inside of the collimator.
    Type: Application
    Filed: May 17, 2022
    Publication date: December 22, 2022
    Inventor: Kasey Otho Greenland
  • Publication number: 20220386439
    Abstract: A monolithic housing for an x-ray source can wrap at least partially around a power supply and an x-ray tube. The monolithic housing can include Al, Ca, Cu, Fe, Mg, Mn, Ni, Si, Sr, Zn, or combinations thereof. Mg can be a major component of the monolithic housing. The monolithic housing can be formed by injection molding. The monolithic housing can provide one or more of the following advantages: (a) light weight (for easier transport), (b) high electrical conductivity (to protect the user from electrical shock), (c) high thermal conductivity (to remove heat generated during use), (d) corrosion resistance, (e) high strength, and (f) high electromagnetic interference shielding (to shield power supply components from external noise, to shield other electronic components from power supply noise, or both).
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Kasey Otho Greenland, Dan Paas
  • Publication number: 20220230833
    Abstract: A target for an x-ray tube can emit x-rays in response to impinging electrons. Some electrons rebound without interacting atomically to form x-rays. Problems of these non-interacting electrons include reduced x-ray flux, charging electrically-insulative components of the x-ray tube, and misdirecting the electron beam. The target can include an array of holes, an array of posts, or both. The holes/posts can increase electron interaction with material of the target. Consequently, a higher percentage of impinging electrons can form x-rays. The holes/posts can also allow the target to effectively generate x-rays of different energies by providing a target with multiple thicknesses. X-rays can be generated in thicker regions of the target with the x-ray tube operated at a larger voltage. X-rays can be generated in thinner regions of the target with the x-ray tube operated at a smaller voltage.
    Type: Application
    Filed: December 20, 2021
    Publication date: July 21, 2022
    Inventors: Kasey Otho Greenland, Eric Miller, Scott Howard Hardy, Todd S. Parker
  • Publication number: 20220148841
    Abstract: An x-ray tube 10 can have (a) an enclosure electrically-insulating a cathode 11 from an anode 12; (b) a coating-ring 18 on an inner-face of the enclosure, the coating-ring 18 encircling a longitudinal-axis 16 of the enclosure; and (c) an interruption-ring 19 located at the inner-face of the enclosure at a different location than the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different location along the longitudinal-axis 16 with respect to the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different radius from the longitudinal-axis 16 than the coating-ring 18. The coating-ring 18 and the interruption-ring 19 can reduce uneven electrical charge build-up on the inner-face of the enclosure, and can protect the triple-point.
    Type: Application
    Filed: October 13, 2021
    Publication date: May 12, 2022
    Inventors: Todd S. Parker, Kasey Otho Greenland
  • Publication number: 20220130632
    Abstract: Electrons can rebound from an x-ray tube target, causing electrical-charge build-up on an inside of the x-ray tube. The charge build-up can increase voltage gradients inside of the x-ray tube, resulting in arcing failure of the x-ray tube. Also, the electrical charge can build unevenly on internal walls of the x-ray tube, causing an undesirable shift of the electron-beam. An x-ray tube (10 or 20) with multiple protrusions (19) on an interior wall of a drift-tube (18) can reduce this electrical-charge build-up. The protrusions (19) can reflect stray electrons back to the anode target (14), thus suppressing backscatter. Each protrusion (19) can have a peak (19p) extending into the hole (18h), and receding to a base (19b) farther from the electron-beam, on an entry-side (19en) nearest the drift-tube-entry (18en) and on an exit-side (19en) nearest the drift-tube-exit (18ex).
    Type: Application
    Filed: September 23, 2021
    Publication date: April 28, 2022
    Inventor: Kasey Otho Greenland
  • Patent number: 11276542
    Abstract: Some embodiments include an x-ray system, comprising: a structure having a hole having an axially extending wall; and a nozzle disposed in the hole; wherein the nozzle and the axially extending wall form a plurality of axially extending helical fluid channels. Some embodiments include an x-ray system formed by shaping tubing to form a plurality of axially extending helical flutes; and forming a plurality of axially extending helical fluid channels by inserting the shaped tubing into a hole in a structure.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 15, 2022
    Assignee: Varex Imaging Corporation
    Inventors: Kasey Otho Greenland, Ronald Wayne Boutte, Patrick Kevin Lewis
  • Publication number: 20210057181
    Abstract: Some embodiments include an x-ray system, comprising: a structure having a hole having an axially extending wall; and a nozzle disposed in the hole; wherein the nozzle and the axially extending wall form a plurality of axially extending helical fluid channels. Some embodiments include an x-ray system formed by shaping tubing to form a plurality of axially extending helical flutes; and forming a plurality of axially extending helical fluid channels by inserting the shaped tubing into a hole in a structure.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Applicant: Varex Imaging Corporation
    Inventors: Kasey Otho Greenland, Ronald Wayne Boutte, Patrick Kevin Lewis
  • Patent number: 10672585
    Abstract: In one example, a lift assembly may exert a force on a rotatable anode of an X-ray source. The lift assembly may include a lift shaft and a lift electromagnet. The lift shaft may be coupled to an anode and configured to rotate around an axis of rotation of the anode. The lift electromagnet may be configured to apply a magnetic force to the lift shaft in a radial direction. The lift electromagnet may include a coupling portion extending between an interior of a vacuum envelope and an exterior of the vacuum envelope and a winding portion coupled to the coupling portion. Windings may at least partially surround the winding portion.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 2, 2020
    Assignee: VAREX IMAGING CORPORATION
    Inventors: Vance Scott Robinson, Kasey Otho Greenland, Neil Bostrom, Jonathan Miller
  • Patent number: 10636612
    Abstract: In one example, a lift assembly may exert a force on a rotatable anode of an X-ray tube. The lift assembly may include a lift shaft and a lift electromagnet. The lift shaft may be coupled to the anode and may be configured to rotate around an axis of rotation of the anode. The lift electromagnet may be configured to apply a magnetic force to the lift shaft in a radial direction. The lift electromagnet may include a first pole and a second pole oriented towards the lift shaft. Windings may be positioned around the first pole. The lift assembly may include a heat dissipating structure.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 28, 2020
    Assignee: Varex Imaging Corporation
    Inventors: Vance Scott Robinson, Kasey Otho Greenland, Neil Bostrom