Patents by Inventor Kate Leeann Bechtel

Kate Leeann Bechtel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220322961
    Abstract: Ingestible devices are disclosed that provide very high localization accuracy for the devices when present in the GI tract of a body. Related systems and methods are also disclosed.
    Type: Application
    Filed: May 23, 2022
    Publication date: October 13, 2022
    Inventors: Mitchell Lawrence Jones, Yi Liu, Kate LeeAnn Bechtel, Christopher Loren Wahl
  • Patent number: 11439330
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: September 13, 2022
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Patent number: 11419528
    Abstract: A method for determining oxygen saturation includes emitting light from sources into tissue; detecting the light by detectors subsequent to reflection; and generating reflectance data based on detecting the light. The method includes determining a first subset of simulated reflectance curves from a set of simulated reflectance curves stored in a tissue oximetry device for a coarse grid; and fitting the reflectance data points to the first subset of simulated reflectance curves to determine a closest fitting one of the simulated reflectance curves. The method includes determining a second subset of simulated reflectance curves for a fine grid based on the closest fitting one of the simulated reflectance curves; determining a peak of absorption and reflection coefficients from the fine grid; and determining an absorption and a reflectance coefficient for the reflectance data points by performing a weighted average of the absorption coefficients and reflection coefficients from the peak.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: August 23, 2022
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, H. Keith Nishihara
  • Patent number: 11363964
    Abstract: Ingestible devices are disclosed that provide very high localization accuracy for the devices when present in the GI tract of a body. Related systems and methods are also disclosed.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 21, 2022
    Inventors: Mitchell Lawrence Jones, Yi Liu, Kate LeeAnn Bechtel, Christopher Loren Wahl
  • Publication number: 20210338120
    Abstract: A system includes an enclosure having a processor and a memory coupled to the processor. The enclosure includes a display coupled to the processor where the display is visible from an exterior of the enclosure; and a battery within the enclosure coupled to the processor and the display. The enclosure includes a probe tip coupled to an exterior of the enclosure. The probe tip includes first, second, and third sensor openings. A first distance between the first and second sensor openings is different than a second distance between the first and third sensor openings. The enclosure includes code stored in the memory where the code is executable by the processor, and includes code to receive first data associated with the first and second sensor openings, code to receive second data associated with the first and second sensor openings, and code to perform SRS using the first and the second data.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Kate LeeAnn Bechtel, Joseph Heanue, Lester John Lloyd, Edward Solomon
  • Publication number: 20210212615
    Abstract: A probe tip of an oximeter device includes first and second printed circuit boards (PCBs) that are coupled to the ends of optical fibers that transmit light between the PCBs and into patient tissue that is to be measured by the oximeter device. The PCBs are oriented at an angle between zero and ninety degrees so that the fibers have a curved shape between the locations at which the fibers are coupled to the first and second PCBs. The angular orientation of the PCBs and curved shape of the fibers allows the fibers to have a longer length than if the fibers were straight and allows for light transmitted through the fibers to have a uniform distribution across a cross-section of the fibers as the light is emitted from the fibers into patient tissue. The uniform distribution of light transmitted into patient tissue allows for reliable oximetry measurements.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 15, 2021
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz
  • Publication number: 20210212610
    Abstract: An oximeter device determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter device. An accelerometer of the oximeter device can detect movement of the oximeter device when oximetry measurements are made by the oximeter device. An amount of the movement is an indicator of a probe face of the oximeter device changing position with respect to the tissue when the measurements are made. The accelerometer information is used by the oximeter device to adjust the quality value to reflect the amount movement. The oxygen saturation and the adjusted quality metric value are displayed on a display of the oximeter device so that a user may view the quality of the displayed information.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 15, 2021
    Inventors: Alex Michael Margiott, Jordan Sweer, Kate LeeAnn Bechtel
  • Patent number: 11058333
    Abstract: A system includes an enclosure having a processor and a memory coupled to the processor. The enclosure includes a display coupled to the processor where the display is visible from an exterior of the enclosure; and a battery within the enclosure coupled to the processor and the display. The enclosure includes a probe tip coupled to an exterior of the enclosure. The probe tip includes first, second, and third sensor openings. A first distance between the first and second sensor openings is different than a second distance between the first and third sensor openings. The enclosure includes code stored in the memory where the code is executable by the processor, and includes code to receive first data associated with the first and second sensor openings, code to receive second data associated with the first and second sensor openings, and code to perform SRS using the first and the second data.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: July 13, 2021
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Joseph Heanue, Lester John Lloyd, Edward Solomon
  • Publication number: 20210186389
    Abstract: A sensor head for a compact oximeter sensor device includes light sources and light detectors. A compact oximeter sensor device implementation is entirely self-contained, without any need to connect, via wires or wirelessly, to a separate system unit. The sources and detectors are arranged in a circular arrangement having various source-detector pair distances that allow for robust calibration and self-correction in a compact probe. Other source-detector arrangements are also possible.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: Kate LeeAnn Bechtel, Brian Wilfley
  • Publication number: 20210177312
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 17, 2021
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Soloman, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Publication number: 20210161443
    Abstract: A method for determining oxygen saturation includes emitting light from sources into tissue; detecting the light by detectors subsequent to reflection; and generating reflectance data based on detecting the light. The method includes determining a first subset of simulated reflectance curves from a set of simulated reflectance curves stored in a tissue oximetry device for a coarse grid; and fitting the reflectance data points to the first subset of simulated reflectance curves to determine a closest fitting one of the simulated reflectance curves. The method includes determining a second subset of simulated reflectance curves for a fine grid based on the closest fitting one of the simulated reflectance curves; determining a peak of absorption and reflection coefficients from the fine grid; and determining an absorption and a reflectance coefficient for the reflectance data points by performing a weighted average of the absorption coefficients and reflection coefficients from the peak.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Kate LeeAnn Bechtel, H. Keith Nishihara
  • Publication number: 20210077000
    Abstract: An oximeter probe is user configurable for being in an absolute reporting mode and a relative reporting mode for measured values. The measured values for the absolute and relative modes include absolute oxygen saturation, relative oxygen saturation, absolute hemoglobin content, relative hemoglobin content, absolute blood volume, relative blood volume. The relative modes and absolute modes for determining and reporting relative or absolute hemoglobin content or relative or absolute blood volume for individual patients are beneficial when determining the efficacy of administered medications, such as epinephrine, that effect blood flow, but not oxygen saturation, in tissue, such as skin. The oximeter probe in these relative modes displays the efficacy of the administered medication as reported values for relative hemoglobin content or relative blood volume fall or rise.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 18, 2021
    Inventors: Kate LeeAnn Bechtel, Robert Lohman, Risal Djohan, Scott Coleridge
  • Patent number: 10939853
    Abstract: A sensor head for a compact oximeter sensor device includes light sources and light detectors. A compact oximeter sensor device implementation is entirely self-contained, without any need to connect, via wires or wirelessly, to a separate system unit. The sources and detectors are arranged in a circular arrangement having various source-detector pair distances that allow for robust calibration and self-correction in a compact probe. Other source-detector arrangements are also possible.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: March 9, 2021
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Brian Wilfley
  • Patent number: 10932708
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: March 2, 2021
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Publication number: 20210052203
    Abstract: An oximeter probe includes a probe unit or a base unit and a probe tip where the probe tip has a number of sources and detectors that can be accessed individually or in differing combinations for measuring tissue oxygen saturation at different tissue depth in tissue. A processor of the oximeter probe controls a multiplexer that is coupled to the detectors for selectively collecting measurement information from the detectors via the multiplexer. The oximeter probe is user programmable via one or more input devices on the oximeter probe for selecting the particular sources and detectors to collect measurement information from by the processor.
    Type: Application
    Filed: November 10, 2020
    Publication date: February 25, 2021
    Inventors: Kate LeeAnn Bechtel, Jennifer Elizabeth Keating, Scott Coleridge
  • Publication number: 20210045695
    Abstract: An oximeter probe that takes into account tissue color (e.g., skin color or melanin content) to improve accuracy when determining oxygen saturation of tissue. Light is transmitted from a light source into tissue having melanin (e.g., eumelanin or pheomelanin). Light reflected from the tissue is received by a detector. A compensation factor is determined to account for absorption due to the melanin. The oximeter uses this compensation factor and determines a melanin-corrected oxygen saturation value.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Inventors: Kate LeeAnn Bechtel, Kimberly Merritt Shultz, Alex Michael Margiott, George Edward Kechter
  • Patent number: 10912503
    Abstract: A method for determining oxygen saturation includes emitting light from sources into tissue; detecting the light by detectors subsequent to reflection; and generating reflectance data based on detecting the light. The method includes determining a first subset of simulated reflectance curves from a set of simulated reflectance curves stored in a tissue oximetry device for a coarse grid; and fitting the reflectance data points to the first subset of simulated reflectance curves to determine a closest fitting one of the simulated reflectance curves. The method includes determining a second subset of simulated reflectance curves for a fine grid based on the closest fitting one of the simulated reflectance curves; determining a peak of absorption and reflection coefficients from the fine grid; and determining an absorption and a reflectance coefficient for the reflectance data points by performing a weighted average of the absorption coefficients and reflection coefficients from the peak.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 9, 2021
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, H. Keith Nishihara
  • Publication number: 20210007649
    Abstract: An oximeter probe determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter probe. The oximeter probe then displays a value for the oxygen saturation with the error value to indicate a quality level for the oxygen saturation and associated values used to calculate oxygen saturation.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz, Scott Coleridge, Joseph Heanue
  • Publication number: 20200383614
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Patent number: 10849536
    Abstract: An oximeter probe is user configurable for being in an absolute reporting mode and a relative reporting mode for measured values. The measured values for the absolute and relative modes include absolute oxygen saturation, relative oxygen saturation, absolute hemoglobin content, relative hemoglobin content, absolute blood volume, relative blood volume. The relative modes and absolute modes for determining and reporting relative or absolute hemoglobin content or relative or absolute blood volume for individual patients are beneficial when determining the efficacy of administered medications, such as epinephrine, that effect blood flow, but not oxygen saturation, in tissue, such as skin. The oximeter probe in these relative modes displays the efficacy of the administered medication as reported values for relative hemoglobin content or relative blood volume fall or rise.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 1, 2020
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Robert Lohman, Risal Djohan, Scott Coleridge