Patents by Inventor Kath M. Bogie

Kath M. Bogie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230158293
    Abstract: An electrode can comprise carbon black and one of polydimethylsiloxane (PDMS) or PVA, wherein the carbon black has a weight of between 10% and 50% of a weight of the PDMS or PVA. The electrode can be suitable for bioelectronics. A pattern of hydrogel can be deposited on the electrode for providing adhesion to a subject. The electrode can be used in wound treatment and/or monitoring devices or in various other bioelectronics applications.
    Type: Application
    Filed: April 9, 2021
    Publication date: May 25, 2023
    Inventors: Kath M. Bogie, DHRUV SESHADRI, MEDHA SRIGIRI, CHRISTIAN A. ZORMAN
  • Patent number: 11478631
    Abstract: The present invention provides a thin and flexible device and method of use thereof for wound treatment and infection control. The integrated surface stimulation device may comprise wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of infections and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system on a flexible polymeric substrate layer with areas of stimulating electrodes, applied using techniques such as those found in additive manufacturing processes. The device is especially valuable in treating biofilm-based infections.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 25, 2022
    Assignees: THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS, CASE WESTERN UNIVERSITY
    Inventors: Kath M. Bogie, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe
  • Patent number: 11395918
    Abstract: Devices and methods for remotely monitoring and treating wounds or wound infections are disclosed. A device can include a multi-layered, flexible substrate having a dressing layer positioned on a wound side of the substrate, and a flexible printed circuit board layer positioned on an electronics side of the substrate that is opposite the wound side of the dressing layer. A plurality of electrodes can be electrically coupled to the flexible printed circuit board. A plurality of temperature sensors can be electrically coupled to the flexible printed circuit board. Systems including the described devices are also disclosed.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: July 26, 2022
    Assignees: United States Government as Represented by the Department of Veterans Affairs, Case Western Reserve University
    Inventors: Kath M. Bogie, Christian A. Zorman
  • Publication number: 20200061379
    Abstract: Devices and methods for remotely monitoring and treating wounds or wound infections are disclosed. Systems including the described devices are also disclosed.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 27, 2020
    Inventors: KATH M. BOGIE, CHRISTIAN A. ZORMAN
  • Publication number: 20190111256
    Abstract: The present invention provides a thin and flexible device and method of use thereof for wound treatment and infection control. The integrated surface stimulation device may comprise wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of infections and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system on a flexible polymeric substrate layer with areas of stimulating electrodes, applied using techniques such as those found in additive manufacturing processes. The device is especially valuable in treating biofilm-based infections.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Inventors: KATH M. BOGIE, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe
  • Patent number: 10201703
    Abstract: The present invention provides a thin and flexible device and method of use thereof for wound treatment and infection control. The integrated surface stimulation device may comprise a complete wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of infections and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system on a flexible polymeric substrate layer with areas of stimulating electrodes, applied using techniques such as those found in additive manufacturing processes. The device is especially valuable in treating biofilm-based infections.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: February 12, 2019
    Assignees: The United States of America, as represented by the Department of Veterans Affairs, Case Western Reserve University
    Inventors: Kath M. Bogie, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe
  • Publication number: 20180369582
    Abstract: The present invention provides a thin and flexible device and method of use thereof for wound treatment and infection control. The integrated surface stimulation device may comprise a complete wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of infections and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system on a flexible polymeric substrate layer with areas of stimulating electrodes, applied using techniques such as those found in additive manufacturing processes. The device is especially valuable in treating biofilm-based infections.
    Type: Application
    Filed: March 31, 2015
    Publication date: December 27, 2018
    Applicants: The United States Government, as represented by the Department of Veterans Affairs, Case Western Reserve University
    Inventors: Kath M. Bogie, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe
  • Publication number: 20160287868
    Abstract: The present invention provides a thin and flexible device and method of use thereof for wound treatment and infection control. The integrated surface stimulation device may comprise a complete wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of infections and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system on a flexible polymeric substrate layer with areas of stimulating electrodes, applied using techniques such as those found in additive manufacturing processes. The device is especially valuable in treating biofilm-based infections.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 6, 2016
    Applicants: The United States Government, as represented by the Department of Veterans Affairs, Case Western Reserve University
    Inventors: Kath M. Bogie, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe
  • Patent number: 9320907
    Abstract: The present invention provides a thin and flexible device and method of use thereof for pain and wound treatment of a subject. The integrated surface stimulation device may comprise a complete wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of pain and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system mounted on the upper face of a flexible polymeric substrate layer. The lower face of the substrate layer will comprise areas of stimulating electrodes, applied using thin film coating techniques. The device can then be applied to the user with a medical grade pressure sensitive adhesive coating provided on the lower face of the substrate layer.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: April 26, 2016
    Inventors: Kath M. Bogie, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe
  • Publication number: 20140324120
    Abstract: The present invention provides a thin and flexible device and method of use thereof for pain and wound treatment of a subject. The integrated surface stimulation device may comprise a complete wireless stimulation system in a disposable and/or reusable flexible device for widespread use in multiple therapeutic applications. The invention would be situated on the skin surface of a patient and would be activated so as to reduce the overall occurrence of pain and/or increase wound healing rates. As provided, the device will comprise an integrated power supply and pre-programmable stimulator/control system mounted on the upper face of a flexible polymeric substrate layer. The lower face of the substrate layer will comprise areas of stimulating electrodes, applied using thin film coating techniques. The device can then be applied to the user with a medical grade pressure sensitive adhesive coating provided on the lower face of the substrate layer.
    Type: Application
    Filed: January 18, 2013
    Publication date: October 30, 2014
    Inventors: Kath M. Bogie, Steven L. Garverick, Christian A. Zorman, Daniel S. Howe