Patents by Inventor Katherine A. Mirica

Katherine A. Mirica has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085363
    Abstract: In some embodiments, the present disclosure pertains to methods of detecting an analyte in a sample by associating the sample with an electrode that includes a metal-organic framework. After association, the redox properties of the electrode are evaluated. Thereafter, the presence or absence of the analyte in the sample is detected by correlating the redox properties of the electrode to the presence or absence of the analyte. In some embodiments, the present disclosure pertains to electrodes that include a metal-organic framework and an electrode surface. In particular embodiments of the present disclosure, the metal-organic framework is associated with the electrode surface. Additional embodiments of the present disclosure pertain to methods of making the electrodes of the present disclosure by associating a metal-organic framework with an electrode surface. In some embodiments, the methods of the present disclosure also include a step of mixing the metal-organic framework with a polymer.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 14, 2024
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki, Michael Ko, Zheng Meng, Robert M. Stolz, Aileen Eagleton
  • Patent number: 11852605
    Abstract: In some embodiments, the present disclosure pertains to methods of detecting an analyte in a sample by associating the sample with an electrode that includes a metal-organic framework. After association, the redox properties of the electrode are evaluated. Thereafter, the presence or absence of the analyte in the sample is detected by correlating the redox properties of the electrode to the presence or absence of the analyte. In some embodiments, the present disclosure pertains to electrodes that include a metal-organic framework and an electrode surface. In particular embodiments of the present disclosure, the metal-organic framework is associated with the electrode surface. Additional embodiments of the present disclosure pertain to methods of making the electrodes of the present disclosure by associating a metal-organic framework with an electrode surface. In some embodiments, the methods of the present disclosure also include a step of mixing the metal-organic framework with a polymer.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: December 26, 2023
    Assignee: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki, Michael Ko, Zheng Meng, Robert M. Stolz, Aileen Eagleton
  • Publication number: 20230348513
    Abstract: In an embodiment, the present disclosure pertains to a method of sensing an analyte in a sample by: (1) exposing the sample to an electrode that includes a covalent-organic framework with a plurality of metal-coordinated aromatic units that are linked to one another by aromatic linkers; (2) detecting a change in a property of the electrode; and (3) correlating the change in the property to the presence or absence of the analyte. In an additional embodiment, the present disclosure pertains to said covalent-organic frameworks. Additional embodiments of the present disclosure pertain to methods of making the covalent-organic frameworks.
    Type: Application
    Filed: March 27, 2023
    Publication date: November 2, 2023
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Zheng Meng, Robert M. Stolz
  • Publication number: 20230285874
    Abstract: In some embodiments, the present disclosure pertains to a method for capturing alkenes that includes: associating the alkenes with metal-organic frameworks, where the metal-organic frameworks includes one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and oxidizing the metal-organic frameworks, where the oxidizing results in a capturing of the alkenes by the metal-organic frameworks. Additional embodiments of the present disclosure pertain to a system for capturing alkenes that includes: metal-organic frameworks, where the metal-organic frameworks include one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and an alkene feed source associated with the metal-organic frameworks, where the alkene feed source is configured to deliver an alkene feed to the system.
    Type: Application
    Filed: January 31, 2023
    Publication date: September 14, 2023
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Xiaoping Zhang, Lukasz K. Mendecki, Zheng Meng, Michael Ko
  • Patent number: 11634446
    Abstract: In an embodiment, the present disclosure pertains to a method of sensing an analyte in a sample by: (1) exposing the sample to an electrode that includes a covalent-organic framework with a plurality of metal-coordinated aromatic units that are linked to one another by aromatic linkers; (2) detecting a change in a property of the electrode; and (3) correlating the change in the property to the presence or absence of the analyte. In an additional embodiment, the present disclosure pertains to said covalent-organic frameworks. Additional embodiments of the present disclosure pertain to methods of making the covalent-organic frameworks.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: April 25, 2023
    Assignee: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Zheng Meng, Robert M. Stolz
  • Patent number: 11596877
    Abstract: In some embodiments, the present disclosure pertains to a method for capturing alkenes that includes: associating the alkenes with metal-organic frameworks, where the metal-organic frameworks includes one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and oxidizing the metal-organic frameworks, where the oxidizing results in a capturing of the alkenes by the metal-organic frameworks. Additional embodiments of the present disclosure pertain to a system for capturing alkenes that includes: metal-organic frameworks, where the metal-organic frameworks include one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and an alkene feed source associated with the metal-organic frameworks, where the alkene feed source is configured to deliver an alkene feed to the system.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: March 7, 2023
    Assignee: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Xiaoping Zhang, Lukasz K. Mendecki, Zheng Meng, Michael Ko
  • Publication number: 20220404308
    Abstract: Embodiments of the present disclosure pertain to methods of capturing one or more ions from an environment by associating the environment with a composition that includes a metal-organic framework. The association results in the capture of the one or more ions by the metal-organic framework. The metal-organic frameworks may include a plurality of metals and a plurality of triphenylene-based ligands that interconnect the plurality of the metals. The methods of the present disclosure may also include a step of detecting one or more captured ions. Additional embodiments of the present disclosure pertain to the compositions for capturing one or more ions from an environment.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 22, 2022
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz Mendecki, Priyanshu Chandra
  • Patent number: 11486850
    Abstract: Embodiments of the present disclosure pertain to ion-selective electrodes that include a metal-organic framework and an electrode surface. The metal-organic framework is associated with the electrode surface in a manner that forms an interface between the metal-organic framework and the electrode surface. Additional embodiments pertain to methods of detecting an ion in a sample by associating the sample with the ion-selective electrodes of the present disclosure. The metal-organic frameworks of the ion-selective electrodes mediate ion-to-electron transduction through the interface between the metal-organic and the electrode surface. Thereafter, the presence or absence of the ion in the sample is detected by detecting a change in potential of the ion-selective electrode and correlating the change in the potential to the presence or absence of the ion.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 1, 2022
    Assignee: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki
  • Publication number: 20210310971
    Abstract: In some embodiments, the present disclosure pertains to a bimetallic metal-organic framework. In some embodiments, the bimetallic metal-organic framework includes a plurality of first metals and a plurality of metal-containing ligands, where each metal-containing ligand includes a second metal and a ligand. In some embodiments, the ligand is coordinated with the second metal and at least one first metal. In some embodiments, the present disclosure pertains to a method of detecting an analyte in a sample by associating the sample with a bimetallic metal-organic framework, as disclosed herein, detecting a change in a property of the bimetallic metal-organic framework, and correlating the change in the property of the bimetallic metal-organic framework to the presence or absence of the analyte in the sample. In some embodiments, the present disclosure pertains to a method of making the bimetallic metal-organic frameworks disclosed herein.
    Type: Application
    Filed: August 19, 2019
    Publication date: October 7, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Zheng Meng, Aylin Aykanat
  • Publication number: 20210262970
    Abstract: In some embodiments, the present disclosure pertains to methods of detecting an analyte in a sample by associating the sample with an electrode that includes a metal-organic framework. After association, the redox properties of the electrode are evaluated. Thereafter, the presence or absence of the analyte in the sample is detected by correlating the redox properties of the electrode to the presence or absence of the analyte. In some embodiments, the present disclosure pertains to electrodes that include a metal-organic framework and an electrode surface. In particular embodiments of the present disclosure, the metal-organic framework is associated with the electrode surface. Additional embodiments of the present disclosure pertain to methods of making the electrodes of the present disclosure by associating a metal-organic framework with an electrode surface. In some embodiments, the methods of the present disclosure also include a step of mixing the metal-organic framework with a polymer.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 26, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki, Michael Ko, Zheng Meng, Robert M. Stolz, Aileen Eagleton
  • Patent number: 11092562
    Abstract: Embodiments of the present disclosure pertain to conductive textiles that include a textile component with a plurality of fibers; and metal-organic frameworks associated with the fibers of the textile component in the form of a conductive network. Metal-organic frameworks may have a two-dimensional structure and a crystalline form. Metal-organic frameworks may be conformally coated on the fibers of the textile component. Additional embodiments of the present disclosure pertain to methods of sensing an analyte in a sample by exposing the sample to a conductive textile; and detecting the presence or absence of the analyte by detecting a change in a property of the conductive textile, and correlating the change in the property to the presence or absence of the analyte. The analyte in the sample may reversibly associate with the conductive textile. The association may also result in filtration, pre-concentration, and capture of the analyte by the conductive textile.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: August 17, 2021
    Assignee: TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Katherine A. Mirica, Merry K. Smith
  • Publication number: 20210230191
    Abstract: In some embodiments, the present disclosure pertains to a method of forming metalorganic frameworks. In some embodiments, the method includes exposing a plurality of zerooxidation state metal atoms to an oxidizing agent. In some embodiments, the exposing facilitates oxidation of the plurality of zero-oxidation state metal atoms to a plurality of metallic ions. In some embodiments, the plurality of metallic ions react with a plurality of ligands to form the metal-organic frameworks. In some embodiments, the formed metal-organic frameworks comprise one or more metals and one or more ligands coordinated with the one or more metals.
    Type: Application
    Filed: June 6, 2019
    Publication date: July 29, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki, Michael KO
  • Publication number: 20210164930
    Abstract: Embodiments of the present disclosure pertain to ion-selective electrodes that include a metal-organic framework and an electrode surface. The metal-organic framework is associated with the electrode surface in a manner that forms an interface between the metal-organic framework and the electrode surface. Additional embodiments pertain to methods of detecting an ion in a sample by associating the sample with the ion-selective electrodes of the present disclosure. The metal-organic frameworks of the ion-selective electrodes mediate ion-to-electron transduction through the interface between the metal-organic and the electrode surface. Thereafter, the presence or absence of the ion in the sample is detected by detecting a change in potential of the ion-selective electrode and correlating the change in the potential to the presence or absence of the ion.
    Type: Application
    Filed: August 13, 2018
    Publication date: June 3, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki
  • Publication number: 20210162320
    Abstract: In some embodiments, the present disclosure pertains to a method for capturing alkenes that includes: associating the alkenes with metal-organic frameworks, where the metal-organic frameworks includes one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and oxidizing the metal-organic frameworks, where the oxidizing results in a capturing of the alkenes by the metal-organic frame-works. Additional embodiments of the present disclosure pertain to a system for capturing alkenes that includes: metal-organic frameworks, where the metal-organic frameworks include one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and an alkene feed source associated with the metal-organic frameworks, where the alkene feed source is configured to deliver an alkene feed to the system.
    Type: Application
    Filed: August 9, 2018
    Publication date: June 3, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Xiaoping Zhan, Lukasz K. Mendecki, Zheng Meng, Michael Ko
  • Publication number: 20200361976
    Abstract: In an embodiment, the present disclosure pertains to a method of sensing an analyte in a sample by: (1) exposing the sample to an electrode that includes a covalent-organic framework with a plurality of metal-coordinated aromatic units that are linked to one another by aromatic linkers; (2) detecting a change in a property of the electrode; and (3) correlating the change in the property to the presence or absence of the analyte. In an additional embodiment, the present disclosure pertains to said covalent-organic frameworks. Additional embodiments of the present disclosure pertain to methods of making the covalent-organic frameworks.
    Type: Application
    Filed: April 22, 2020
    Publication date: November 19, 2020
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Zheng Meng, Robert M. Stolz
  • Publication number: 20180306740
    Abstract: Embodiments of the present disclosure pertain to conductive textiles that include a textile component with a plurality of fibers; and metal-organic frameworks associated with the fibers of the textile component in the form of a conductive network. Metal-organic frameworks may have a two-dimensional structure and a crystalline form. Metal-organic frameworks may be conformally coated on the fibers of the textile component. Additional embodiments of the present disclosure pertain to methods of sensing an analyte in a sample by exposing the sample to a conductive textile; and detecting the presence or absence of the analyte by detecting a change in a property of the conductive textile, and correlating the change in the property to the presence or absence of the analyte. The analyte in the sample may reversibly associate with the conductive textile. The association may also result in filtration, pre-concentration, and capture of the analyte by the conductive textile.
    Type: Application
    Filed: April 25, 2018
    Publication date: October 25, 2018
    Applicant: Dartmouth College
    Inventors: Katherine A. Mirica, Merry K. Smith
  • Patent number: 10046550
    Abstract: A system and method for creating three-dimensional nanostructures is disclosed. The system includes a substrate bonded to a carrier using a bonding agent. The bonding agent may be vaporizable or sublimable. The carrier may be a glass or glass-like substance. In some embodiments, the carrier may be permeable having one or a plurality of pores through which the bonding agent may escape when converted to a gaseous state with heat, pressure, light or other methods. A substrate is bonded to the carrier using the bonding agent. The substrate is then processed to form a membrane. This processing may include grinding, polishing, etching, patterning, or other steps. The processed membrane is then aligned and affixed to a receiving substrate, or a previously deposited membrane. Once properly attached, the bonding agent is then heated, depressurized or otherwise caused to sublimate or vaporize, thereby releasing the processed membrane from the carrier.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 14, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Henry I. Smith, Corey P. Fucetola, Katherine A. Mirica, Jay J. Fucetola, Dakota S. Freeman
  • Patent number: 9995719
    Abstract: Methods for depositing materials on patterned substrates, and related devices, are generally provided. In some embodiments, a material is deposited on a patterned substrate. In certain embodiments, the substrate comprises a first portion with a material deposited on the first portion and a second portion of the substrate essentially free of the material. The methods described herein may be useful in fabricating sensors, circuits, tags, among other devices. In some cases, devices for determining analytes are also provided.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 12, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Kelvin Mitchell Frazier, Katherine A. Mirica, Joseph Walish
  • Patent number: 9664679
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: May 30, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Scott T. Phillips, Andres W. Martinez, Manish J. Butte, Amy Wong, Samuel W. Thomas, Hayat Sindi, Sarah J. Vella, Emanuel Carrilho, Katherine A. Mirica, Yanyan Liu
  • Patent number: 9551706
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 24, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen