Patents by Inventor Katherine G. Heinen

Katherine G. Heinen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6730541
    Abstract: A wafer-scale assembly apparatus for integrated circuits and a method for forming the wafer-scale assembly are disclosed. A semiconductor wafer including a plurality of circuits is provided with a plurality of metal contact pads as electrical entry and exit ports. A first wafer-scale patterned polymer film carrying solder balls for each of the contact pads on the wafer is positioned opposite the wafer, and the wafer and the film are aligned. The film is brought into contact with the wafer. Radiant energy in the near infrared spectrum is applied to the backside of the wafer, heating the wafer uniformly and rapidly without moving the semiconductor wafer. Thermal energy is transferred through the wafer to the surface of the wafer and into the solder balls, which reflow onto the contact pads, while the thermal stretching of the polymer film is mechanically compensated. The uniformity of the height of the liquid solder balls is controlled either by mechanical stoppers or by the precision linear motion of motors.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: May 4, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Katherine G. Heinen, Darvin R. Edwards, Elizabeth G. Jacobs
  • Patent number: 6528873
    Abstract: A method of making a ball grid assembly and the assembly wherein a mask (1) is provided which is not wettable by solder and through which a pattern of parallel holes (3) is provided extending to at least one of a pair of opposing surfaces. A magnet (5), preferably an electromagnet, is disposed at the other one of the opposing surfaces. Solderable magnetic pins (7) are caused to enter the holes by magnetic attraction by positioning the one surface of the mask over the pins with a portion of each of the pins extending out of the hole into which it has entered. A layer of solder (11) is formed on the portion of each of the pins extending out of a hole in the mask and this layer of solder is reflowed over the pins and over a grid of solder adherable elements (13) on the package (15) and then allowed to set. The mask is removed from the pins when the solder is again set.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: March 4, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Katherine G. Heinen
  • Publication number: 20030027415
    Abstract: A method of making a ball grid assembly and the assembly wherein a mask (1) is provided which is not wettable by solder and through which a pattern of parallel holes (3) is provided extending to at least one of a pair of opposing surfaces. A magnet (5), preferably an electromagnet, is disposed at the other one of the opposing surfaces. Solderable magnetic pins (7) are caused to enter the holes by magnetic attraction by positioning the one surface of the mask over the pins with a portion of each of the pins extending out of the hole into which it has entered. A layer of solder (11) is formed on the portion of each of the pins extending out of a hole in the mask and this layer of solder is reflowed over the pins and over a grid of solder adherable elements (13) on the package (15) and then allowed to set. The mask is removed from the pins when the solder is again set.
    Type: Application
    Filed: September 27, 2002
    Publication date: February 6, 2003
    Inventor: Katherine G. Heinen
  • Patent number: 6432744
    Abstract: A wafer-scale assembly apparatus for integrated circuits and method for forming the wafer-scale assembly. A semiconductor wafer including a plurality of circuits is provided with a plurality of metal contact pads as electrical entry and exit ports. A first wafer-scale patterned polymer film carrying solder balls for each of the contact pads on the wafer is positioned opposite the wafer, and the wafer and the film are aligned. The film is brought into contact with the wafer. Radiant energy in the near infrared spectrum is applied to the backside of the wafer, heating the wafer uniformly and rapidly without moving the semiconductor wafer. Thermal energy is transferred through the wafer to the surface of the wafer and into the solder balls, which reflow onto the contact pads, while the thermal stretching of the polymer film is mechanically compensated. The uniformity of the height of the liquid solder balls is controlled either by mechanical stoppers or by the precision linear motion of motors.
    Type: Grant
    Filed: October 31, 1998
    Date of Patent: August 13, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Gonzalo Amador, Gregory Barton Hotchkiss, Katherine G. Heinen
  • Publication number: 20010044197
    Abstract: A wafer-scale assembly apparatus for integrated circuits and a method for forming the wafer-scale assembly are disclosed. A semiconductor wafer including a plurality of circuits is provided with a plurality of metal contact pads as electrical entry and exit ports. A first wafer-scale patterned polymer film carrying solder balls for each of the contact pads on the wafer is positioned opposite the wafer and the wafer and the film are aligned. The film is brought into contact with the wafer. Radiant energy in the near infrared spectrum is applied to the backside of the wafer, heating the wafer uniformly and rapidly without moving the semiconductor wafer. Thermal energy is transferred through the wafer to the surface of the wafer and into the solder balls, which reflow onto the contact pads, while the thermal stretching of the polymer film is mechanically compensated. The uniformity of the height of the liquid solder balls is controlled either by mechanical stoppers or by the precision linear motion of motors.
    Type: Application
    Filed: November 5, 1998
    Publication date: November 22, 2001
    Inventors: KATHERINE G. HEINEN, DARVIN R. EDWARDS, ELIZABETH G. JACOBS
  • Patent number: 6251767
    Abstract: A method of making a ball grid assembly and the assembly wherein a mask (1) is provided which is not wettable by solder and through which a pattern of parallel holes (3) is provided extending to at least one of a pair of opposing surfaces. A magnet (5), preferably an electromagnet, is disposed at the other one of the opposing surfaces. Solderable magnetic pins (7) are caused to enter the holes by magnetic attraction by positioning the one surface of the mask over the pins with a portion of each of the pins extending out of the hole into which it has entered. A layer of solder (11) is formed on the portion of each of the pins extending out of a hole in the mask and this layer of solder is reflowed over the pins and over a grid of solder adherable elements (13) on the package (15) and then allowed to set. The mask is removed from the pins when the solder is again set.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: June 26, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: Katherine G. Heinen
  • Patent number: 6096578
    Abstract: An integrated circuit package (10, 40) may comprise an integrated circuit chip (12, 42) and a substrate (14, 44) opposite the chip (12, 42). A connector (20, 52) may be disposed between the chip (12, 42) and the substrate (14, 44) to electrically couple the chip (12, 42) and the substrate (14, 44). A matrix (24, 50) may be disposed about the connector (20, 52). The matrix (24, 50) may comprise a blend of liquid crystal polymer and thermoplastic polymer. The matrix (24, 50) may have a coefficient of thermal expansion in a direction (26, 56) substantially parallel to the chip (12, 42) and the substrate (14, 44) that is greater than that of the chip (12, 42) and that is less than that of the substrate (14, 44) in the substantially parallel direction (26, 56). In a direction (28, 58) normal to the substantially parallel direction (26, 56), the matrix (24, 50) may have a coefficient of thermal expansion that is approximately that of the connector (20, 52).
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: August 1, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Elizabeth G. Jacobs, Katherine G. Heinen
  • Patent number: 5894173
    Abstract: An integrated circuit package (10, 40) may comprise an integrated circuit chip (12, 42) and a substrate (14, 44) opposite the chip (12, 42). A connector (20, 52) may be disposed between the chip (12, 42) and the substrate (14, 44) to electrically couple the chip (12, 42) and the substrate (14, 44). A matrix (24, 50) may be disposed about the connector (20, 52). The matrix (24, 50) may comprise a blend of liquid crystal polymer and thermoplastic polymer. The matrix (24, 50) may have a coefficient of thermal expansion in a direction (26, 56) substantially parallel to the chip (12, 42) and the substrate (14, 44) that is greater than that of the chip (12, 42) and that is less than that of the substrate (14, 44) in the substantially parallel direction (26, 56). In a direction (28, 58) normal to the substantially parallel direction (26, 56), the matrix (24, 50) may have a coefficient of thermal expansion that is approximately that of the connector (20, 52).
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: April 13, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Elizabeth G. Jacobs, Katherine G. Heinen
  • Patent number: 5585665
    Abstract: A lead frame for a semiconductor IC device has a pair of common elongated leads and first and second groups of slender leads arranged on opposite sides of the common elongated leads and generally extending transverse to the common elongated leads. The common elongated leads have as their integral parts slender leads extending therefrom generally transverse thereto and substantially linear extensions from both ends of the common elongated leads. The linear extensions serve to firmly support a semiconductor chip to be packaged along with parts of the leads. The common elongated leads may further have as their integral parts projections extending from their sides for enhancement of the heat dissipation capability. A semiconductor chip may have bonding pads arranged thereon such that bonding wires and the common elongated leads do not cross each other for electrical connection between the common elongated leads and bonding pads of the semiconductor chip.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: December 17, 1996
    Assignees: Hitachi, Ltd., Texas Instruments, Inc.
    Inventors: Ichiro Anjoh, Gen Murakami, Michael A. Lamson, Katherine G. Heinen
  • Patent number: 5458716
    Abstract: A method is provided for forming a thermally enhanced molded cavity package of a type which includes a lid and which is for housing a microcircuit chip. The molded package includes a heat spreader and a lead frame. The method includes the steps of attaching the lead frame to one surface of the heat spreader. A mold press is secured or clamped to-the lead frame and to the opposite surface of the heat spreader. Molding compound is injected into the press to form the package body having an upper and a lower section. During molding, a cavity is provided in the package body having the first surface of the heat spreader as a cavity floor and a lid seat is constructed in the upper section of the package body for maintaining a lid received thereon substantially parallel with respect to the cavity floor. The heat spreader is bonded to at least one of the package body sections and to at least one of the leads of the lead frame.
    Type: Grant
    Filed: May 25, 1994
    Date of Patent: October 17, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Rafael C. Alfaro, Katherine G. Heinen, Paul J. Hundt
  • Patent number: 5442233
    Abstract: A lead frame for a semiconductor IC device has a pair of common elongated leads and first and second groups of slender leads arranged on opposite sides of the common elongated leads and generally extending transverse to the common elongated leads. The common elongated leads have as their integral parts slender leads extending therefrom generally transverse thereto and substantially linear extensions from both ends of the common elongated leads. The linear extensions serve to firmly support a semiconductor chip to be packaged along with parts of the leads. The common elongated leads may further have as their integral parts projections extending from their sides for enhancement of the heat dissipation capability. A semiconductor chip may have bonding pads arranged thereon such that bonding wires and the common elongated leads do not cross each other for electrical connection between the common elongated leads and bonding pads of the semiconductor chip.
    Type: Grant
    Filed: December 10, 1992
    Date of Patent: August 15, 1995
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Ichiro Anjoh, Gen Murakami, Michael A. Lamson, Katherine G. Heinen
  • Patent number: 5432127
    Abstract: A method for electrically connecting a lead frame (10) to an integrated circuit (40). Each lead conductor (16) and (18) of the lead frame (10) has the identical geometric area in order to provide identical capacitances. A metal shield may be provided on to provide noise shielding for the integrated circuit (40). In addition, a power bus (12) and (14) is provided having false leads (24) and (26) to maintain equal capacitance.
    Type: Grant
    Filed: December 2, 1993
    Date of Patent: July 11, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Michael A. Lamson, Katherine G. Heinen
  • Patent number: 5422788
    Abstract: Adhesion between a heat spreader (15) and a substance (19) to be adhered to the heat spreader can be enhanced by using thermal spray deposition to apply a coating (23) to the heat spreader. The substance to be adhered is applied to the coated heat spreader.
    Type: Grant
    Filed: July 6, 1994
    Date of Patent: June 6, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Katherine G. Heinen, Brenda C. Gogue, Henry F. Breit
  • Patent number: 5418189
    Abstract: A lead over chip packaged device that is less prone to package cracking during surface mounting is disclosed. The lead over chip lead frame overlies the active face of a semiconductor circuit, The backside of the semiconductor circuit is covered with an ainopropyltriethoxysilane coating. The aminopropyltriethoxysilane coating promotes adhesion between the backside of the semiconductor circuit and the mold compound used to encapsulate the device. This reduces package cracking resulting from delamination between the inactive face of the chip and the mold compound during reflow solder.
    Type: Grant
    Filed: August 25, 1994
    Date of Patent: May 23, 1995
    Assignee: Texas Instruments Incorporated
    Inventor: Katherine G. Heinen
  • Patent number: 5362680
    Abstract: Adhesion between a heat spreader (15) and a substance (19) to be adhered to the heat spreader can be enhanced by using thermal spray deposition to apply a coating (23) to the heat spreader. The substance to be adhered is applied to the coated heat spreader.
    Type: Grant
    Filed: August 18, 1992
    Date of Patent: November 8, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Katherine G. Heinen, Brenda C. Gogue, Henry F. Breit
  • Patent number: 5359224
    Abstract: An insulated lead frame is disclosed. The preferred embodiment contains a lead over chip lead frame having an aluminum oxide insulator on portions of the power supply busses where no electrical connections will be made. The aluminum oxide may be easily deposited by an arc deposition process such as by plasma deposition. A mask prohibits the aluminum oxide from coating the places on the power supply busses where electrical connection, such as by wire bond, will be made. Wire bonds crossing over the power supply busses as they connect bond pads to the lead fingers of the lead frame are therefore less likely to short to the insulated power supply busses. A semiconductor packaged device having an aluminum oxide coating to the underside of the chip support pad is also disclosed. The aluminum oxide coating promotes adhesion between the chip support pad and the encapsulant, that is typically plastic, thereby preventing the chance of delamination and package cracking.
    Type: Grant
    Filed: July 15, 1993
    Date of Patent: October 25, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Katherine G. Heinen, Henry F. Breit
  • Patent number: 5321277
    Abstract: A base for a multi-chip module that provides for built-in testability. Active test components are embedded in a module substrate. These test components primarily consist of boundary scan cells that comply with the IEEE 1149.1 test standard. The scan cells are connected to each other, and are connected to interconnection paths among chips and to individual chips, thereby partitioning the module into testable partitions. These partitions permit testing of chip interconnections, chip functionality, and module functionality. Scan cell connections may be mask programmable so that the same multi-chip module base can be used for many different multi-chip module configurations.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: June 14, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Steve E. Sparks, Darvin R. Edwards, Katherine G. Heinen
  • Patent number: 5233220
    Abstract: A lead frame (10) is connected over an integrated circuit (40) by adhesives (42) and (44). Each lead conductor (16) and (18) of the lead frame (10) has the identical geometric area in order to provide identical capacitances. A metal shield may be provided on adhesives (42) and (44) to provide noise shielding for the integrated circuit (40).
    Type: Grant
    Filed: February 24, 1992
    Date of Patent: August 3, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Michael A. Lamson, Katherine G. Heinen
  • Patent number: 5227661
    Abstract: A lead over chip packaged device that is less prone to package cracking during surface mounting is disclosed. The lead over chip lead frame overlies the active face of a semiconductor circuit. The backside of the semiconductor circuit is covered with an aminopropyltriethoxysilane coating. The aminopropyltriethoxysilane coating promotes adhesion between the backside of the semiconductor circuit and the mold compound used to encapsulate the device. This reduces package cracking resulting from delamination between the inactive face of the chip and the mold compound during reflow solder.
    Type: Grant
    Filed: September 24, 1990
    Date of Patent: July 13, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Katherine G. Heinen