Patents by Inventor Katherine Gora
Katherine Gora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240016185Abstract: Meat substitute recipes with animal cells and exogenous heme-containing protein on plant-based meat dough matrices are disclosed. Methods of producing are also disclosed.Type: ApplicationFiled: August 30, 2023Publication date: January 18, 2024Inventors: Joshua MARCH, Nahyun CHO, Katherine GORA, Dongjun ZHAO
-
Patent number: 11771112Abstract: Meat substitute recipes with animal cells and exogenous heme-containing protein on plant-based meat dough matrices are disclosed. Methods of producing are also disclosed.Type: GrantFiled: March 1, 2023Date of Patent: October 3, 2023Assignee: EAT SCIFI INC.Inventors: Joshua March, Nahyun Cho, Katherine Gora, Dongjun Zhao
-
Publication number: 20230189840Abstract: Meat substitute recipes with animal cells and exogenous heme-containing protein on plant-based meat dough matrices are disclosed. Methods of producing are also disclosed.Type: ApplicationFiled: March 1, 2023Publication date: June 22, 2023Inventors: Joshua MARCH, Nahyun CHO, Katherine GORA, Dongjun ZHAO
-
Publication number: 20220275361Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alga, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: ApplicationFiled: May 17, 2022Publication date: September 1, 2022Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
-
Patent number: 11352621Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: GrantFiled: May 7, 2021Date of Patent: June 7, 2022Assignee: Zymergen Inc.Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Patent number: 11312951Abstract: The present disclosure provides systems and methods for host cell improvement utilizing epistatic effects. The systems and methods described herein are host cell agnostic and therefore can be implemented across taxa. Furthermore, the disclosed systems and methods can be implemented to modulate or improve any host cell parameter of interest.Type: GrantFiled: May 12, 2021Date of Patent: April 26, 2022Assignee: Zymergen Inc.Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Patent number: 11208649Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: GrantFiled: May 5, 2021Date of Patent: December 28, 2021Assignee: Zymergen Inc.Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Patent number: 11155807Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: GrantFiled: December 18, 2020Date of Patent: October 26, 2021Assignee: Zymergen Inc.Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Patent number: 11155808Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: GrantFiled: March 22, 2021Date of Patent: October 26, 2021Assignee: Zymergen Inc.Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Publication number: 20210284992Abstract: The present disclosure provides systems and methods for host cell improvement utilizing epistatic effects. The systems and methods described herein are host cell agnostic and therefore can be implemented across taxa. Furthermore, the disclosed systems and methods can be implemented to modulate or improve any host cell parameter of interest.Type: ApplicationFiled: May 12, 2021Publication date: September 16, 2021Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
-
Publication number: 20210261949Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: ApplicationFiled: May 5, 2021Publication date: August 26, 2021Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
-
Publication number: 20210261950Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: ApplicationFiled: May 7, 2021Publication date: August 26, 2021Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
-
Patent number: 11085040Abstract: The present disclosure provides systems and methods for host cell improvement utilizing epistatic effects. The systems and methods described herein are host cell agnostic and therefore can be implemented across taxa. Furthermore, the disclosed systems and methods can be implemented to modulate or improve any host cell parameter of interest.Type: GrantFiled: October 28, 2019Date of Patent: August 10, 2021Assignee: Zymergen Inc.Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Publication number: 20210222156Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: ApplicationFiled: March 22, 2021Publication date: July 22, 2021Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
-
Publication number: 20210102193Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: ApplicationFiled: December 18, 2020Publication date: April 8, 2021Inventors: Zach SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
-
Patent number: 10968445Abstract: The present disclosure provides machine learning techniques for computationally predicting the phenotypic performance of combinations of genetic variations and for designing new improved host cells. The machine learning models and methods described herein are host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any host cell parameter of interest.Type: GrantFiled: October 15, 2020Date of Patent: April 6, 2021Assignee: Zymergen Inc.Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Publication number: 20210024918Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: ApplicationFiled: October 15, 2020Publication date: January 28, 2021Inventors: Zach SERBER, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Patent number: 10883101Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: GrantFiled: May 29, 2020Date of Patent: January 5, 2021Assignee: Zymergen Inc.Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
-
Publication number: 20200370058Abstract: The present disclosure provides a HTP genomic engineering platform for improving Escherichia coli. that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition.Type: ApplicationFiled: June 6, 2018Publication date: November 26, 2020Inventors: Matthew Davis, Christy Wisnewski, Patrick Westfall, Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Michael Flashman, Robert Haushalter, Stacy-Anne Morgan, Michael Blaisse, Prabha Ramakrishnan, Kyle Rothschild-Mancinelli, Youngnyun Kim
-
Patent number: 10808243Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.Type: GrantFiled: April 2, 2020Date of Patent: October 20, 2020Assignee: Zymergen Inc.Inventors: Zach Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno