Patents by Inventor Katherine Harry

Katherine Harry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230299362
    Abstract: An electrolyte for a lithium-ion battery includes a primary lithium salt and a solvent composition. In some implementations, the solvent composition includes fluoroethylene carbonate (FEC), at least one linear ester, and at least one branched ester. In some implementations, a mole fraction of the FEC in the electrolyte is in a range of about 2 mol. % to about 30 mol. %, a total mole fraction of the at least one linear ester and the at least one branched ester in the electrolyte is at least about 45 mol. %, a molar ratio of the at least one linear ester to the at least one branched esters is in a range of about 1:10 to about 20:1, and the electrolyte is substantially free of four-carbon cyclic carbonates. Lithium-ion batteries employing such electrolytes are also disclosed.
    Type: Application
    Filed: March 16, 2023
    Publication date: September 21, 2023
    Inventors: Kostiantyn TURCHENIUK, Natasha TERAN, William GENT, Xiujun YUE, Katherine HARRY, Viacheslav IABLOKOV, Naoki NITTA, Gleb YUSHIN
  • Patent number: 11735769
    Abstract: A solid state electrolyte material including a decontaminated lithium conducting ceramic oxide material including a decontaminated surface thickness. The decontaminated surface thickness is less than or equal to 5 nm. The decontaminated surface thickness may be greater than or equal to 1 nm. The decontaminated lithium conducting ceramic oxide material may be selected from the group consisting of Li7La3Zr2O12 (LLZO), Li5La3Ta2O12 (LLTO), Li6La2CaTa2O12 (LLCTO), Li6La2ANb2O12 (A is Ca or Sr), Li1+xAlxGe2-x(PO4)3 (LAGP), Li14Al0.4(Ge2-xTix)1.6(PO4)3 (LAGTP), perovskite Li3xLa2/3-xTiO3 (LLTO), Li0.8La0.6Zr2(PO4)3 (LLZP), Li1+xTi2-xAlx(PO4)3 (LTAP), Li1+x+yTi2-xAlxSiy(PO4)3-y (LTASP), LiTixZr2-x(PO4)3 (LTZP), Li2Nd3TeSbO12 and mixtures thereof.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: August 22, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Saravanan Kuppan, Katherine Harry, Michael Metzger, Nathan Craig, Jake Christensen
  • Publication number: 20210167421
    Abstract: A solid state electrolyte material including a decontaminated lithium conducting ceramic oxide material including a decontaminated surface thickness. The decontaminated surface thickness is less than or equal to 5 nm. The decontaminated surface thickness may be greater than or equal to 1 nm. The decontaminated lithium conducting ceramic oxide material may be selected from the group consisting of Li7La3Zr2O12 (LLZO), Li5La3Ta2O12 (LLTO), Li6La2CaTa2O12 (LLCTO), Li6La2ANb2O12 (A is Ca or Sr), Li1+xAlxGe2-x(PO4)3 (LAGP), Li14Al0.4(Ge2-xTix)1.6(PO4)3 (LAGTP), perovskite Li3xLa2/3-xTiO3 (LLTO), Li0.8La0.6Zr2(PO4)3 (LLZP), Li1+xTi2-xAlx(PO4)3 (LTAP), Li1+x+yTi2-xAlxSiy(PO4)3-y (LTASP), LiTixZr2-x(PO4)3 (LTZP), Li2Nd3TeSbO12 and mixtures thereof.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Saravanan KUPPAN, Katherine HARRY, Michael METZGER, Nathan CRAIG, Jake CHRISTENSEN
  • Patent number: 10923765
    Abstract: A method of decontaminating a lithium conducting ceramic oxide material. The method includes soaking the lithium conducting ceramic oxide material having a first thickness of surface contaminants in a first organic solvent containing an inorganic salt at an inorganic salt concentration to obtain a soaked lithium conducting ceramic oxide material. The method further includes rinsing the soaked lithium conducting ceramic oxide material in a second organic solvent to obtain a decontaminated lithium conducting ceramic oxide material having a second thickness of surface contaminants less than the first thickness of surface contaminants.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: February 16, 2021
    Assignee: ROBERT BOSCH GMBH
    Inventors: Saravanan Kuppan, Katherine Harry, Michael Metzger, Nathan Craig, Jake Christensen
  • Patent number: 10804565
    Abstract: Solid electrolytes have a favorable combination of properties such as high conductivity, high transference number, optimum processability, and low brittleness. A composite electrolyte includes some amount of a class of network polymer electrolytes with high transference number and high room temperature conductivity, and an additional polymeric component to contribute mechanical integrity and/or processability. The solid electrolytes can include a network polymer having linked nodes composed of a tetrahedral arylborate composition and a linear polymer combined with the network polymer as a composite. The solid electrolytes can be used in thin films and in solid-state batteries.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: October 13, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Sondra Hellstrom, David Abram, Michael Aubrey, Jeffrey Long, Katherine Harry, John F. Christensen, Hany Eitouni, Jordan Axelson
  • Publication number: 20200212483
    Abstract: A method of decontaminating a lithium conducting ceramic oxide material. The method includes soaking the lithium conducting ceramic oxide material having a first thickness of surface contaminants in a first organic solvent containing an inorganic salt at an inorganic salt concentration to obtain a soaked lithium conducting ceramic oxide material. The method further includes rinsing the soaked lithium conducting ceramic oxide material in a second organic solvent to obtain a decontaminated lithium conducting ceramic oxide material having a second thickness of surface contaminants less than the first thickness of surface contaminants.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Saravanan KUPPAN, Katherine HARRY, Michael METZGER, Nathan CRAIG, Jake CHRISTENSEN
  • Patent number: 10581050
    Abstract: An electrode configuration for a battery cell includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a low counter-ion permeability layer interposed between the separator and the positive electrode. The separator has a first permeability to counter-ions, which do not participate in the battery electrode reactions, and the low counter-ion permeability layer has a second permeability to the counter-ions that is less than the first permeability. The separator includes a first salt concentration adjacent to the low counter-ion permeability layer and a second salt concentration adjacent to the negative electrode, and the second salt concentration is greater than the first salt concentration.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 3, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Nathan P. Craig, John F. Christensen, Hany Eitouni, Katherine Harry, Abdul-Kader Srouji
  • Publication number: 20190051938
    Abstract: Solid electrolytes have a favorable combination of properties such as high conductivity, high transference number, optimum processability, and low brittleness. A composite electrolyte includes some amount of a class of network polymer electrolytes with high transference number and high room temperature conductivity, and an additional polymeric component to contribute mechanical integrity and/or processability. The solid electrolytes can include a network polymer having linked nodes composed of a tetrahedral arylborate composition and a linear polymer combined with the network polymer as a composite. The solid electrolytes can be used in thin films and in solid-state batteries.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 14, 2019
    Inventors: Sondra Hellstrom, David Abram, Michael Aubrey, Jeffrey Long, Katherine Harry, John F. Christensen, Hany Eitouni, Jordan Axelson
  • Publication number: 20180358598
    Abstract: An electrode configuration for a battery cell includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a low counter-ion permeability layer interposed between the separator and the positive electrode. The separator has a first permeability to counter-ions, which do not participate in the battery electrode reactions, and the low counter-ion permeability layer has a second permeability to the counter-ions that is less than the first permeability. The separator includes a first salt concentration adjacent to the low counter-ion permeability layer and a second salt concentration adjacent to the negative electrode, and the second salt concentration is greater than the first salt concentration.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Inventors: Nathan P. Craig, John F. Christensen, Hany Eitouni, Katherine Harry, Abdul-Kader Srouji