Patents by Inventor Katherine LATHAM

Katherine LATHAM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938185
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: March 26, 2024
    Assignee: H. LUNDBECK A/S
    Inventors: Maria-Cristina Loomis, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T. L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
  • Patent number: 11885877
    Abstract: Encoded transmit signals are provided to an ultrasound array such diverging ultrasound waves are sequentially transmitted. Each diverging ultrasound wave is generated by a respective set of encoded transmit signals, where each set of encoded transmit signals is encoded by a respective row of an N×N invertible orthogonal matrix. Only a selected subset of M rows, with N<M, is employed to encode the transmit signals. Sets of receive signals detected in response to the transmitted diverging ultrasound waves are decoded via a transposed matrix generated based on the invertible orthogonal matrix, with each set of decoded receive signals being associated with insonification via a subset of the ultrasound array elements in the fixed aperture. Synthetic aperture beamforming is performed on the decoded receive signals to generate an ultrasound image.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: January 30, 2024
    Assignee: DALHOUSIE UNIVERSITY
    Inventors: Christopher Samson, Jeremy Brown, Katherine Latham, Robert Adamson
  • Patent number: 11255965
    Abstract: Fresnel elevation focusing at a selected elevation angle is performed by transmitting a sequential set of Fresnel-focused ultrasound pulses, where a different Fresnel phase pattern is used for each pulse, and where the receive signals are coherently compounded. The different Fresnel patterns cause the secondary lobe energy to be reduced via averaging of variations of the pressure fields in the secondary lobe regions. In some embodiments, the method of coherently compounded Fresnel focusing is combined with coherently compounded defocused wave (e.g. plane wave or diverging wave) imaging in the azimuth direction. Each of the elevation slices are collected by changing the Fresnel patterns respectively employed when the sequence of plane waves or diverging waves are transmitted, such that the coherent compounding can benefit both planes simultaneously. Hadamard receive encoding and subsequent dynamic receive beamforming may be employed to further improve performance in the elevation direction.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 22, 2022
    Assignee: DALHOUSIE UNIVERSITY
    Inventors: Jeremy Brown, Christopher Samson, Katherine Latham
  • Publication number: 20210263151
    Abstract: Encoded transmit signals are provided to an ultrasound array such diverging ultrasound waves are sequentially transmitted. Each diverging ultrasound wave is generated by a respective set of encoded transmit signals, where each set of encoded transmit signals is encoded by a respective row of an N×N invertible orthogonal matrix. Only a selected subset of M rows, with N<M, is employed to encode the transmit signals. Sets of receive signals detected in response to the transmitted diverging ultrasound waves are decoded via a transposed matrix generated based on the invertible orthogonal matrix, with each set of decoded receive signals being associated with insonification via a subset of the ultrasound array elements in the fixed aperture. Synthetic aperture beamforming is performed on the decoded receive signals to generate an ultrasound image.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 26, 2021
    Applicant: Dalhouse University
    Inventors: Christopher SAMSON, Jeremy BROWN, Katherine LATHAM, Robert ADAMSON
  • Patent number: 10996332
    Abstract: Systems and methods are disclosed for performing imaging with a crossed-electrode ultrasound transducer array, where ultrasound transducer array is configured for focusing in one direction via conventional time-delay phased array beamforming, and for focusing in a second direction via a Fresnel aperture formed via the application of bias voltages. The ultrasound transducer array connections are switched between transmit and receive operations, such that the Fresnel aperture is generated in the first direction upon transmit, and in the second direction upon receive. One or both of the transmit Fresnel aperture and the receive Fresnel aperture are configured as a set of delay-corrected Fresnel sub-apertures, where the delay associated with each Fresnel sub-aperture is selected to compensate for variations in path lengths between the Fresnel sub-apertures and the focal point.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: May 4, 2021
    Assignee: DALHOUSIE UNIVERSITY
    Inventors: Jeremy Brown, Katherine Latham
  • Publication number: 20200041644
    Abstract: Fresnel elevation focusing at a selected elevation angle is performed by transmitting a sequential set of Fresnel-focused ultrasound pulses, where a different Fresnel phase pattern is used for each pulse, and where the receive signals are coherently compounded. The different Fresnel patterns cause the secondary lobe energy to be reduced via averaging of variations of the pressure fields in the secondary lobe regions. In some embodiments, the method of coherently compounded Fresnel focusing is combined with coherently compounded defocused wave (e.g. plane wave or diverging wave) imaging in the azimuth direction. Each of the elevation slices are collected by changing the Fresnel patterns respectively employed when the sequence of plane waves or diverging waves are transmitted, such that the coherent compounding can benefit both planes simultaneously. Hadamard receive encoding and subsequent dynamic receive beamforming may be employed to further improve performance in the elevation direction.
    Type: Application
    Filed: December 15, 2017
    Publication date: February 6, 2020
    Inventors: Jeremy BROWN, Christopher SAMSON, Katherine LATHAM
  • Publication number: 20180246207
    Abstract: Systems and methods are disclosed for performing imaging with a crossed-electrode ultrasound transducer array, where ultrasound transducer array is configured for focusing in one direction via conventional time-delay phased array beamforming, and for focusing in a second direction via a Fresnel aperture formed via the application of bias voltages. The ultrasound transducer array connections are switched between transmit and receive operations, such that the Fresnel aperture is generated in the first direction upon transmit, and in the second direction upon receive. One or both of the transmit Fresnel aperture and the receive Fresnel aperture are configured as a set of delay-corrected Fresnel sub-apertures, where the delay associated with each Fresnel sub-aperture is selected to compensate for variations in path lengths between the Fresnel sub-apertures and the focal point.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 30, 2018
    Inventors: Jeremy BROWN, Katherine LATHAM