Patents by Inventor Kathleen C. Yu

Kathleen C. Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7904869
    Abstract: A method of area compaction for integrated circuit layout design comprises determining physical extent boundaries for each layer of at least first circuit and second circuit building blocks. Determining physical extent boundaries includes determining for each respective layer of the first circuit and second circuit building blocks (i) a used portion and (ii) a free portion. The used portion corresponds to a functional portion of the respective circuit building block and the free portion corresponds to a non-functional portion of the respective circuit building block. The method further includes establishing packing keys with respect to the determined physical extent boundaries of each layer of the first circuit and second circuit building blocks, respectively. The packing keys define an interlocking characteristic for packing compaction of the corresponding first circuit or second circuit building block with another circuit building block.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: March 8, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kathleen C. Yu, Scott D. Hector, Robert L. Maziasz, Claudia A. Stanley, James E. Vasck
  • Publication number: 20090158229
    Abstract: A method of area compaction for integrated circuit layout design comprises determining physical extent boundaries for each layer of at least first circuit and second circuit building blocks. Determining physical extent boundaries includes determining for each respective layer of the first circuit and second circuit building blocks (i) a used portion and (ii) a free portion. The used portion corresponds to a functional portion of the respective circuit building block and the free portion corresponds to a non-functional portion of the respective circuit building block. The method further includes establishing packing keys with respect to the determined physical extent boundaries of each layer of the first circuit and second circuit building blocks, respectively. The packing keys define an interlocking characteristic for packing compaction of the corresponding first circuit or second circuit building block with another circuit building block.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Inventors: Kathleen C. Yu, Scott D. Hector, Robert L. Maziasz, Claudia A. Stanley, James E. Vasck
  • Patent number: 7176574
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: February 13, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kathleen C. Yu, Kirk J. Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh T. Lii
  • Patent number: 7122421
    Abstract: A semiconductor (10) has an active device, such as a transistor, with a directly underlying passive device, such as a capacitor (75, 77, 79), that are connected by a via or conductive region (52) and interconnect (68, 99). The via or conductive region (52) contacts a bottom surface of a diffusion or source region (22) of the transistor and contacts a first (75) of the capacitor electrodes. A laterally positioned vertical via (32, 54, 68) and interconnect (99) contacts a second (79) of the capacitor electrodes. A metal interconnect or conductive material (68) may be used as a power plane that saves circuit area by implementing the power plane underneath the transistor rather than adjacent the transistor.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: October 17, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hector Sanchez, Michael A. Mendicino, Byoung W. Min, Kathleen C. Yu
  • Patent number: 7030001
    Abstract: One embodiment forms a gate dielectric layer over a substrate and then selectively deposits a first metal layer over portions of the gate dielectric layer in which a first device type will be formed. A second metal layer, different from the first metal layer, is formed over exposed portions of the gate dielectric layer in which a second device type will be formed. Each of the first and second device types will have different work functions because each will include a different metal in direct contact with the gate dielectric. In one embodiment, the selective deposition of the first metal layer is performed by ALD and with the use of an inhibitor layer which is selectively formed over the gate dielectric layer such that the first metal layer may be selectively deposited on only those portions of the gate dielectric layer which are not covered by the inhibitor layer.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: April 18, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Lynne M. Michaelson, Kathleen C. Yu, Robert E. Jones, Jr.
  • Patent number: 6921961
    Abstract: A semiconductor (10) has an active device, such as a transistor, with a directly underlying passive device, such as a capacitor (75, 77, 79), that are connected by a via or conductive region (52) and interconnect (68, 99). The via or conductive region (52) contacts a bottom surface of a diffusion or source region (22) of the transistor and contacts a first (75) of the capacitor electrodes. A laterally positioned vertical via (32, 54, 68) and interconnect (99) contacts a second (79) of the capacitor electrodes. A metal interconnect or conductive material (68) may be used as a power plane that saves circuit area by implementing the power plane underneath the transistor rather than adjacent the transistor.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: July 26, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hector Sanchez, Michael A. Mendicino, Byoung W. Min, Kathleen C. Yu
  • Patent number: 6838354
    Abstract: Dummy features (64, 65, 48a, 48b) are formed within an interlevel dielectric layer (36). Passivation layers (32 and 54) are formed by electroless deposition to protect the underlying conductive regions (44, 48a, 48b and 30) from being penetrated from the air gaps (74). In addition, the passivation layers (32 and 54) overhang the underlying conductive regions (44, 48a, 48b and 30), thereby defining dummy features (65a, 65b and 67) adjacent the conductive regions (48a, 44 and 48b). The passivation layers (32 and 54) can be formed without additional patterning steps and help minimize misaligned vias from puncturing air gaps.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 4, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cindy K. Goldberg, Stanley Michael Filipiak, John C. Flake, Yeong-Jyh T. Lii, Bradley P. Smith, Yuri E. Solomentsev, Terry G. Sparks, Kirk J. Strozewski, Kathleen C. Yu
  • Patent number: 6838332
    Abstract: A semiconductor (10) has an active device, such as a transistor, with a directly underlying passive device, such as a capacitor (75, 77, 79), that are connected by a via or conductive region (52) and interconnect (68, 99). The via or conductive region (52) contacts a bottom surface of a diffusion or source region (22) of the transistor and contacts a first (75) of the capacitor electrodes. A laterally positioned vertical via (32, 54, 68) and interconnect (99) contacts a second (79) of the capacitor electrodes. A metal interconnect or conductive material (68) may be used as a power plane that saves circuit area by implementing the power plane underneath the transistor rather than adjacent the transistor.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: January 4, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hector Sanchez, Michael A. Mendicino, Byoung W. Min, Kathleen C. Yu
  • Patent number: 6815820
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: November 9, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kathleen C. Yu, Kirk J. Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh T. Lii
  • Patent number: 6764919
    Abstract: Dummy features (64, 65a, 65b, 48a, 48b) are formed within an interlevel dielectric layer (36). A non-gap filling dielectric layer (72) is formed over the dummy features (64, 65a, 65b, 48a, 48b) to form voids (74) between dummy features (64, 65a, 65b, 48a, 48b) or between a dummy feature (48a) and a current carrying region (44). The dummy features (64, 65a, 65b, 48a, 48b) can be conductive (48a, 48b) and therefore, formed when forming the current carrying region (44). In another embodiment, the dummy features (64, 65a, 65b, 48a, 48b) are insulating (64, 65a, 65b) and are formed after forming the current carrying region (44). In yet another embodiment, both conductive and insulating dummy features (64, 65a, 65b, 48a, 48b) are formed. In a preferred embodiment, the voids (74) are air gaps, which are a low dielectric constant material.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 20, 2004
    Assignee: Motorola, Inc.
    Inventors: Kathleen C. Yu, Edward O. Travis, Bradley P. Smith
  • Publication number: 20040119134
    Abstract: Dummy features (64, 65, 48a, 48b) are formed within an interlevel dielectric layer (36). Passivation layers (32 and 54) are formed by electroless deposition to protect the underlying conductive regions (44, 48a, 48b and 30) from being penetrated from the air gaps (74). In addition, the passivation layers (32 and 54) overhang the underlying conductive regions (44, 48a, 48b and 30), thereby defining dummy features (65a, 65b and 67) adjacent the conductive regions (48a, 44 and 48b). The passivation layers (32 and 54) can be formed without additional patterning steps and help minimize misaligned vias from puncturing air gaps.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Cindy K. Goldberg, Stanley Michael Filipiak, John C. Flake, Yeong-Jyh T. Lii, Bradley P. Smith, Yuri E. Solomentsev, Terry G. Sparks, Kirk J. Strozewski, Kathleen C. Yu
  • Publication number: 20040121577
    Abstract: Dummy features (64, 65a, 65b, 48a, 48b) are formed within an interlevel dielectric layer (36). A non-gap filling dielectric layer (72) is formed over the dummy features (64, 65a, 65b, 48a, 48b) to form voids (74) between dummy features (64, 65a, 65b, 48a, 48b) or between a dummy feature (48a) and a current carrying region (44). The dummy features (64, 65a, 65b, 48a, 48b) can be conductive (48a, 48b) and therefore, formed when forming the current carrying region (44). In another embodiment, the dummy features (64, 65a, 65b, 48a, 48b) are insulating (64, 65a, 65b) and are formed after forming the current carrying region (44). In yet another embodiment, both conductive and insulating dummy features (64, 65a, 65b, 48a, 48b) are formed. In a preferred embodiment, the voids (74) are air gaps, which are a low dielectric constant material.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Kathleen C. Yu, Edward O. Travis, Bradley P. Smith
  • Publication number: 20030209779
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Application
    Filed: May 9, 2002
    Publication date: November 13, 2003
    Inventors: Kathleen C. Yu, Kirk J. Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh T. Lii
  • Patent number: 6313024
    Abstract: In one embodiment of the invention, conductive support structures (112) are formed within an interlevel dielectric layer. The conductive support structures (112) lie within the bond pad region (111) of the integrated circuit and provide support to portions of the interlevel dielectric layer that have a low Young's modulus. The conductive support structures (112) are formed using the same processes that are used to form metal interconnects in the device region (109) of the integrated circuit, but they are not electrically coupled to semiconductor devices that lie within the device region (109). Conductive support structures (114) are also formed within the scribe line region (104) to provide support to the interlevel dielectric layer in this region of the integrated circuit.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: November 6, 2001
    Assignee: Motorola, Inc.
    Inventors: Nigel G. Cave, Kathleen C. Yu, Janos Farkas
  • Patent number: 6037668
    Abstract: In one embodiment of the invention, conductive support structures (112) are formed within an interlevel dielectric layer. The conductive support structures (112) lie within the bond pad region (111) of the integrated circuit and provide support to portions of the interlevel dielectric layer that have a low Young's modulus. The conductive support structures (112) are formed using the same processes that are used to form metal interconnects in the device region (109) of the integrated circuit, but they are not electrically coupled to semiconductor devices that lie within the device region (109). Conductive support structures (114) are also formed within the scribe line region (104) to provide support to the interlevel dielectric layer in this region of the integrated circuit.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: March 14, 2000
    Assignee: Motorola, Inc.
    Inventors: Nigel G. Cave, Kathleen C. Yu, Janos Farkas