Patents by Inventor Kathleen Stebe

Kathleen Stebe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240075445
    Abstract: Methods of making robust bijels include dispersing metal oxide precursors and/or metal salts into at least one phase of a bijel and hydrolyzing and condensing the metal oxide precursors and/or metal salts in a sol-gel reaction to form sintered bridges between interfacially jammed surface-active nanoparticles. The methods can be used with any bijels, including those produced during solvent transfer-induced phase separation (STRIPS) methods and other methods. A robust bijel includes chemically sintered bridges between the interfacially jammed surface-active nanoparticles. Methods of making nanocatalyst-functionalized sintered bijels include adsorbing metal salts to a surface of sintered interfacially jammed nanoparticles of bijels, and reducing the metal precursors on the surface of the sintered nanoparticles. Nanocatalyst-functionalized sintered bijels include catalytically active metal or metal oxide nanocatalysts on a surface of the sintered interfacially jammed surface-active nanoparticles.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 7, 2024
    Inventors: Daeyeon Lee, Kathleen Stebe, Giuseppe Di Vitantonio, Tiancheng Wang
  • Patent number: 11857936
    Abstract: Methods of making robust bijels include dispersing metal oxide precursors and/or metal salts into at least one phase of a bijel and hydrolyzing and condensing the metal oxide precursors and/or metal salts in a sol-gel reaction to form sintered bridges between interfacially jammed surface-active nanoparticles. The methods can be used with any bijels, including those produced during solvent transfer-induced phase separation (STRIPS) methods and other methods. A robust bijel includes chemically sintered bridges between the interfacially jammed surface-active nanoparticles. Methods of making nanocatalyst-functionalized sintered bijels include adsorbing metal salts to a surface of sintered interfacially jammed nanoparticles of bijels, and reducing the metal precursors on the surface of the sintered nanoparticles. Nanocatalyst-functionalized sintered bijels include catalytically active metal or metal oxide nanocatalysts on a surface of the sintered interfacially jammed surface-active nanoparticles.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 2, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daeyeon Lee, Kathleen Stebe, Giuseppe Di Vitantonio, Tiancheng Wang
  • Patent number: 11623974
    Abstract: A method for producing a click-active Janus particle includes combining seed particles with a monomer emulsion to obtain monomer-swollen seed particles; and polymerizing the monomer-swollen seed particles to obtain click-active Janus particles. A method for functionalizing a click-active Janus particle includes combining seed particles with a monomer emulsion to obtain monomer-swollen seed particles; polymerizing the monomer-swollen seed particles to obtain click-active Janus particles; and functionalizing the click-active Janus particles using one or more click chemistry reactions.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: April 11, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daeyeon Lee, Kathleen Stebe, Laura Bradley
  • Publication number: 20220000119
    Abstract: Systems and methods for eradicating biofilms by killing bacteria within a biofilm, degrading the matrix and removing biofilm debris are disclosed herein. The disclosed subject matter provides techniques for administering a suspension of H2O2 and iron oxide nanoparticles to substantially eradicate bacteria within a biofilm matrix and degrade the bio film matrix, actuating the iron oxide nanoparticles for assembly into biohybrid robots suitable for removal of biofilm debris, and moving the biohybrid robots to remove the bio film debris from accessible or enclosed surfaces. In some embodiments, the disclosed subject matter can include embedding iron oxide nanoparticles in a hydrogel to form a soft robotic structure, administering the soft robotic structure to a biofilm-covered location, and magnetizing the soft robot structure to substantially eradicate bacteria within a biofilm matrix, degrade the biofilm matrix, and remove biofilm debris from enclosed surfaces.
    Type: Application
    Filed: November 25, 2019
    Publication date: January 6, 2022
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Hyun Koo, Kathleen Stebe, Vijay Kumar, Elizabeth Hunter, Edward Steager, Evan Brink
  • Publication number: 20210238001
    Abstract: Provided are systems and methods for inducing strain fields to give rise to controllable wrinkle patterns in a variety of substrates. Also provided are articles having persistent wrinkling patterns thereon.
    Type: Application
    Filed: May 24, 2019
    Publication date: August 5, 2021
    Inventors: Daeyeon LEE, Kathleen STEBE, Shu YANG, Xu ZHANG
  • Publication number: 20210220791
    Abstract: Methods of making robust bijels include dispersing metal oxide precursors and/or metal salts into at least one phase of a bijel and hydrolyzing and condensing the metal oxide precursors and/or metal salts in a sol-gel reaction to form sintered bridges between interfacially jammed surface-active nanoparticles. The methods can be used with any bijels, including those produced during solvent transfer-induced phase separation (STRIPS) methods and other methods. A robust bijel includes chemically sintered bridges between the interfacially jammed surface-active nanoparticles. Methods of making nanocatalyst-functionalized sintered bijels include adsorbing metal salts to a surface of sintered interfacially jammed nanoparticles of bijels, and reducing the metal precursors on the surface of the sintered nanoparticles. Nanocatalyst-functionalized sintered bijels include catalytically active metal or metal oxide nanocatalysts on a surface of the sintered interfacially jammed surface-active nanoparticles.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 22, 2021
    Inventors: Daeyeon LEE, Kathleen STEBE, Giuseppe DI VITANTONIO, Tiancheng WANG
  • Publication number: 20190177458
    Abstract: A method for producing a click-active Janus particle includes combining seed particles with a monomer emulsion to obtain monomer-swollen seed particles; and polymerizing the monomer-swollen seed particles to obtain click-active Janus particles. A method for functionalizing a click-active Janus particle includes combining seed particles with a monomer emulsion to obtain monomer-swollen seed particles; polymerizing the monomer-swollen seed particles to obtain click-active Janus particles; and functionalizing the click-active Janus particles using one or more click chemistry reactions.
    Type: Application
    Filed: June 1, 2017
    Publication date: June 13, 2019
    Inventors: Daeyeon LEE, Kathleen STEBE, Laura BRADLEY
  • Publication number: 20070170064
    Abstract: In accordance with the invention, a surface of a substrate is patterned by the steps of providing the substrate, forming a surfactant pattern on the surface and using electroless deposition or electrodeposition to deposit material on the surface in a pattern directed by the surfactant pattern. The material will preferentially deposit either under the surfactant pattern or outside the surfactant pattern depending on the material and the conditions of deposition. The surfactant pattern is conveniently formed by printing on the surface a surfactant that forms a self assembled monolayer (SAM). The method can be adapted to build complex structures in one, two and three dimensions.
    Type: Application
    Filed: December 13, 2006
    Publication date: July 26, 2007
    Inventors: Noshir Pesika, Kathleen Stebe, Peter Searson
  • Publication number: 20050118338
    Abstract: A method of depositing and sorting micro-scale, nano-scale and molecular-scale objects onto a surface. In particular, the methods can be used to produce arrays of micro- and nanoscale objects on a surface by use of fluidic alignment with surface patterning techniques. In a preferred embodiment of the invention, the objects are sorted and/or spatially distributed and arrayed into micro- or nanometer scale geometries with periodicity on a larger area by evaporation (or other means of selective removal of solvent) of liquid containing molecular scale solutes, nanowires, metallic particles, polymeric particles, inorganic particles or composite particles formed from such materials or preferably, such particles may be sorted and deposited from suspensions by continuously creating and evaporating films of the suspension on patterned substrates.
    Type: Application
    Filed: May 3, 2004
    Publication date: June 2, 2005
    Applicant: Johns Hopkins University
    Inventors: Kathleen Stebe, Fengqui Fan, Van Truskett
  • Publication number: 20050069645
    Abstract: In accordance with the invention, a surface of a substrate is patterned by the steps of providing the substrate, forming a surfactant pattern on the surface and using electroless deposition or electrodeposition to deposit material on the surface in a pattern directed by the surfactant pattern. The material will preferentially deposit either under the surfactant pattern or outside the surfactant pattern depending on the material and the conditions of deposition. The surfactant pattern is conveniently formed by printing on the surface a surfactant that forms a self assembled monolayer (SAM). The method can be adapted to build complex structures in one, two and three dimensions.
    Type: Application
    Filed: April 29, 2004
    Publication date: March 31, 2005
    Inventors: Noshir Pesika, Kathleen Stebe, Peter Searson