Patents by Inventor KATHRYN B. FREDERICK

KATHRYN B. FREDERICK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230404421
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Applicant: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Patent number: 11779234
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: October 10, 2023
    Assignee: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Publication number: 20210001025
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Applicant: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Patent number: 10835654
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: November 17, 2020
    Assignee: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Publication number: 20180280601
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 4, 2018
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Patent number: 9526818
    Abstract: A protective cap for fluidly sealing a connector of a cable is provided. The protective cap includes a flexible body having an interior cavity with a distal opening through which the connector is inserted. The distal opening is defined by an annular ridge that engages a cable portion proximal the connector to fluidly seal the entire connector within the cavity. The body portion may have an oval-shaped cross-section while the interior cavity is cylindrical so that the portions wider portions of the body provide longitudinal rigidity to facilitate installation and removal of the cap by a manual pushing and pulling. A tether may be included to attach the cap to a distal portion of the cable. The protective cap and tether may be integrally formed of a soft, highly flexible material to improve ease of use, biocompatibility and patient comfort.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 27, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Keith Hamilton Kearsley, Gabe Wegel, Kathryn B. Frederick, Julien Duhamel, Brian Barber
  • Publication number: 20150290377
    Abstract: A protective cap for fluidly sealing a connector of a cable is provided. The protective cap includes a flexible body having an interior cavity with a distal opening through which the connector is inserted. The distal opening is defined by an annular ridge that engages a cable portion proximal the connector to fluidly seal the entire connector within the cavity. The body portion may have an oval-shaped cross-section while the interior cavity is cylindrical so that the portions wider portions of the body provide longitudinal rigidity to facilitate installation and removal of the cap by a manual pushing and pulling. A tether may be included to attach the cap to a distal portion of the cable. The protective cap and tether may be integrally formed of a soft, highly flexible material to improve ease of use, biocompatibility and patient comfort.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 15, 2015
    Applicant: THORATEC CORPORATION
    Inventors: KEITH HAMILTON KEARSLEY, GABE WEGEL, KATHRYN B. FREDERICK, JULIEN DUHAMEL, BRIAN BARBER