Patents by Inventor Kathryn E. Gordon

Kathryn E. Gordon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6154054
    Abstract: A field programmable gate array has antifuses disposed over logic modules. Each of these antifuses includes a conductive plug and an overlaying region of programmable material (for example, amorphous silicon). To program one of these antifuses, an electric connection is formed through the programmable material to couple the conductive plug to a metal conductor that overlays the region of programmable material. The metal conductor includes a layer of a barrier metal to separate another metal of the conductor (for example, aluminum from an aluminum layer) from migrating into the programmable material when the antifuse is unprogrammed. In some embodiments, less than three percent of all antifuses of the field programmable gate array has a corner (from the top-down perspective) of the region of programmable material that is disposed (within lateral distance DIS of the conductive plug) underneath the metal conductor of that antifuse.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: November 28, 2000
    Assignee: QuickLogic Corporation
    Inventors: Mehul D. Shroff, Rajiv Jain, Andre Stolmeijer, Kathryn E. Gordon
  • Patent number: 6097077
    Abstract: Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: August 1, 2000
    Assignee: Quicklogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5955751
    Abstract: A field programmable gate array has antifuses disposed over logic modules. Each of these antifuses includes a conductive plug and an overlaying region of programmable material (for example, amorphous silicon). To program one of these antifuses, an electric connection is formed through the programmable material to couple the conductive plug to a metal conductor that overlays the region of programmable material. The metal conductor includes a layer of a barrier metal to separate another metal of the conductor (for example, aluminum from an aluminum layer) from migrating into the programmable material when the antifuse is unprogrammed. In some embodiments, less than three percent of all antifuses of the field programmable gate array has a corner (from the top-down perspective) of the region of programmable material that is disposed (within lateral distance DIS of the conductive plug) underneath the metal conductor of that antifuse.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: September 21, 1999
    Assignee: QuickLogic Corporation
    Inventors: Mehul D. Shroff, Rajiv Jain, Andre Stolmeijer, Kathryn E. Gordon
  • Patent number: 5880512
    Abstract: Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: March 9, 1999
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5786268
    Abstract: Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: July 28, 1998
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5701027
    Abstract: Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: December 23, 1997
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5557136
    Abstract: Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
    Type: Grant
    Filed: June 1, 1992
    Date of Patent: September 17, 1996
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5544070
    Abstract: A programmable device comprises a first antifuse programmed with a first programming method and a second antifuse programmed with a second programming method, whereby an actual operating current flowing through the second antifuse exceeds a maximum permissible operating current of the first antifuse but does not exceed a maximum permissible operating current of the second antifuse, whereby an actual operating current flowing through the first antifuse does not exceed the maximum permissible operating current of the first antifuse, and whereby an actual operating current flowing through the second antifuse does not exceed the maximum permissible operating current of the second antifuse. By allowing the use of a programming method on some antifuses which would not be adequate for the programming of other antifuses, the realization of user-specific circuits in field programmable devices is facilitated and the reliability of user-specific circuits realized in field programmable devices is enhanced.
    Type: Grant
    Filed: August 27, 1992
    Date of Patent: August 6, 1996
    Assignee: QuickLogic Corporation
    Inventors: William D. Cox, Andrew K. L. Chan, Richard J. Wong, James M. Apland, Kathryn E. Gordon
  • Patent number: 5471154
    Abstract: The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs.
    Type: Grant
    Filed: January 13, 1995
    Date of Patent: November 28, 1995
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Andrew K. Chan
  • Patent number: 5397939
    Abstract: The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: March 14, 1995
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Andrew K. Chan
  • Patent number: 5362676
    Abstract: An amorphous silicon antifuse has a bottom electrode, a dielectric overlying the bottom electrode, amorphous silicon contacting the bottom electrode in a via in the dielectric, and the top electrode over the amorphous silicon. Spacers are provided in the via corners between the amorphous silicon and the top electrode. The spacers smooth the surface above the amorphous silicon, provide good top electrode step coverage, and reduce leakage current. Another amorphous silicon antifuse is provided in which the amorphous silicon layer is planar. The planarity makes the amorphous silicon layer easy to manufacture. A programmable CMOS circuit is provided in which the antifuses are formed over the intermetal dielectric. The antifuses are not affected by the high temperatures associated with the formation of the intermetal dielectric and the first-metal contacts. The intermetal dielectric protects the circuit elements during the antifuse formation.
    Type: Grant
    Filed: July 28, 1992
    Date of Patent: November 8, 1994
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5319238
    Abstract: An amorphous silicon antifuse has a bottom electrode, a dielectric overlying the bottom electrode, amorphous silicon contacting the bottom electrode in a via in the dielectric, and the top electrode over the amorphous silicon. Spacers are provided in the via corners between the amorphous silicon and the top electrode. The spacers smooth the surface above the amorphous silicon, provide good top electrode step coverage, and reduce leakage current. Another amorphous silicon antifuse is provided in which the amorphous silicon layer is planar. The planarity makes the amorphous silicon layer easy to manufacture. A programmable CMOS circuit is provided in which the antifuses are formed over the intermetal dielectric. The antifuses are not affected by the high temperatures associated with the formation of the intermetal dielectric and the first-metal contacts. The intermetal dielectric protects the circuit elements during the antifuse formation.
    Type: Grant
    Filed: July 28, 1992
    Date of Patent: June 7, 1994
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5302546
    Abstract: The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs.
    Type: Grant
    Filed: July 31, 1991
    Date of Patent: April 12, 1994
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Andrew K. Chan
  • Patent number: 5196724
    Abstract: An amorphous silicon antifuse has a bottom electrode, a dielectric overlying the bottom electrode, amorphous silicon contacting the bottom electrode in a via in the dielectric, and the top electrode over the amorphous silicon. Spacers are provided in the via corners between the amorphous silicon and the top electrode. The spacers smooth the surface above the amorphous silicon, provide good top electrode step coverage, and reduce leakage current. Another amorphous silicon antifuse is provided in which the amorphous silicon layer is planar. The planarity makes the amorphous silicon layer easy to manufacture. A programmable CMOS circuit is provided in which the antifuse are formed over the intermetal dielectric. The antifuse are not affected by the high temperatures associated with the formation of the intermetal dielectric and the first-metal contacts. The intermetal dielectric protects the circuit elements during the antifuse formation.
    Type: Grant
    Filed: April 23, 1992
    Date of Patent: March 23, 1993
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 4914055
    Abstract: A method for forming an array of antifuse structures on a semiconductor substrate which previously has had CMOS devices fabricated thereupon up to first metallization. A fuse structure is formed as a sandwich by successively depositing a bottom layer of TiW, a layer of amorphous silicon, and a top layer of TiW. The amorphous silicon is formed in an antifuse via formed in a dielectric layer covering the bottom layer of TiW. First metallization is deposited and patterned over the top layer of TiW. An intermetal dielectric layer is formed over the fuse array and second metal conductors are formed thereupon. An alternative embodiment includes forming an oxide sidewall spacer around the periphery of an antifuse structure. Connection resistance to the bottom layer of TiW is lowered by using a number of vias between the second-metal conductors and the bottom layer of TiW in a row of an array of antifuse devices.
    Type: Grant
    Filed: August 24, 1989
    Date of Patent: April 3, 1990
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kathryn E. Gordon, Ching S. Jenq