Patents by Inventor Kathryn E. Hilpisch

Kathryn E. Hilpisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108885
    Abstract: An example fixation component for an implantable medical device (IMD) includes a base and a plurality of tines configured be deployed with a target deployment stiffness to engage tissue a target implant site while maintaining a target deflection stiffness after deployment. The base defines a longitudinal axis of the fixation component and is fixedly attached near the distal end of the IMD. Each tine is spaced apart from one another around a perimeter of the distal end of the IMD and extend from the base. A shape of each tine is selected to control each of the target deployment stiffness and target deflection stiffness.
    Type: Application
    Filed: September 18, 2023
    Publication date: April 4, 2024
    Inventors: Xin Chen, Vladimir Grubac, Brian P. Colin, Kathryn E. Hilpisch, Michael D. Eggen
  • Publication number: 20230098146
    Abstract: A system for delivery of a leadless pacemaker. The system includes a catheter with an elongate flexible tubular body with a proximal end and a distal end, wherein the distal end of the tubular body includes a delivery cup with an external surface having an inflatable compliant balloon; and a pacing capsule of the leadless pacemaker releasably retained in the delivery cup. The pacing capsule includes an arrangement of tines configured to deploy and pierce a target tissue at a desired pacing capsule implant site in a coronary sinus of a patient. The balloon, when at least partially inflated, is configured to urge the delivery cup against the target tissue during deployment of the pacing capsule.
    Type: Application
    Filed: July 18, 2022
    Publication date: March 30, 2023
    Inventors: Kaileigh E. Rock, Ronald A. Drake, Kathryn E. Hilpisch
  • Publication number: 20230053188
    Abstract: A computing device may be communicably coupled to a first pacemaker implanted in a heart of a patient and a second pacemaker implanted in the heart of the patient. The computing device may receive, from the first pacemaker, first race responsive pacing data, and may receive, from the second pacemaker, second rate responsive pacing data. The computing device may synchronize, based at least in part on the first rate responsive pacing data and the second rate responsive pacing data, rate responsive pacing of the first pacemaker and the second pacemaker.
    Type: Application
    Filed: July 21, 2022
    Publication date: February 16, 2023
    Inventors: Yanina Grinberg, Kathryn E. Hilpisch, Eric R. Williams, Hyun J. Yoon, Todd J. Sheldon
  • Publication number: 20230012417
    Abstract: A medical system includes an implantable medical device configured to be positioned within an atrium of a heart. The implantable medical device includes a housing carrying a return electrode, a first leadlet, a second leadlet, and a fixation device. The medical system may be configured to deliver a variety of therapies, including one or more of ventricle-from-atrium cardiac therapy (“VfA therapy”), left bundle branch pacing therapy (“LBB therapy”), or cardiac resynchronization therapy (“CRT”).
    Type: Application
    Filed: June 23, 2022
    Publication date: January 12, 2023
    Inventors: Kaileigh E. Rock, Kathryn E. Hilpisch, Douglas S. Hine, Matthew D. Bonner
  • Publication number: 20220395683
    Abstract: An implantable medical device configured to deliver pacing therapy, the implantable medical device including a device body configured to position within a heart, where the device body comprises a proximal body portion and a distal body portion and defines a longitudinal axis extending through the proximal body portion and the distal body portion, the proximal body portion is configured to rotate around the longitudinal axis relative to distal body portion, and a leadlet mechanically coupled to the device body, where the leadlet mechanically supports an electrode configured to deliver pacing therapy, and where in response to the proximal body portion rotating relative to the distal body portion, the device body is configured to alter an extension length of the leadlet.
    Type: Application
    Filed: May 16, 2022
    Publication date: December 15, 2022
    Inventors: Zhongping Yang, Thomas A. Anderson, Kaileigh E. Rock, Matthew D. Bonner, Kathryn E. Hilpisch, Wade M. Demmer
  • Publication number: 20220387764
    Abstract: A guide wire system configured to guide a medical device (e.g., a medical lead) to a target area within a patient. The guide wire system may be configured to penetrate and pass through a tissue wall in the patient to guide the medical device to the target area. The guide wire system includes a support section configured to expand to substantially maintain a position relative to the tissue wall. The guide wire system includes a pull wire configured to cause the support portion to expand. The expanded support section may provide counter-traction to a distal force on the tissue wall exerted by a medical device during, for example, fixation of the medical device to the target area, or other stages of an implantation. The support section is configured to re-establish an initial configuration for proximal withdrawal from the tissue wall.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 8, 2022
    Inventors: Matthew D. Bonner, Kathryn E. Hilpisch, Ronald A. Drake
  • Publication number: 20220369961
    Abstract: This disclosure is directed to systems and techniques for detecting change in patient health based upon patient data. In one example, a medical system comprising processing circuitry communicably coupled to a glucose sensor and configured to generate continuous glucose sensor measurements of a patient. The processing circuitry is further configured to: extract at least one feature from the continuous glucose sensor measurements over at least one time period, wherein the at least one feature comprises one or more of an amount of time within a pre-determined glucose level range, a number of hypoglycemia events, a number of hyperglycemia events, or one or more statistical metrics corresponding to the continuous glucose sensor measurements; apply a machine learning model to the at least one extracted feature to produce data indicative of a risk of a cardiovascular event; and generate output data based on the risk of the cardiovascular event.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 24, 2022
    Inventors: Kamal Deep Mothilal, Michael D. Eggen, Ning Yu, John P. Keane, Shantanu Sarkar, Randal C. Schulhauser, David L. Probst, Mark R. Boone, Kenneth A. Timmerman, Stanley J. Taraszewski, Matthew A. Joyce, Amruta Paritosh Dixit, Kathryn E. Hilpisch, Kathryn Ann Milbrandt, Laura M. Zimmerman, Matthew L. Plante
  • Patent number: 7715917
    Abstract: Determining an optimal atrioventricular interval is of interest for proper delivery of cardiac resynchronization therapy. Although device optimization is gradually and more frequently being performed through a referral process with which the patient undergoes an echocardiographic optimization, the decision of whether to optimize or not is still generally reserved for the implanting physician. Recent abstracts have suggested a formulaic approach for setting A-V interval based on intrinsic electrical sensing, that may possess considerable appeal to clinicians versus a patient average nominal A-V setting of 100 ms. The present invention presents a methods of setting nominal device settings based on entering patient cardiac demographics to determine what A-V setting may be appropriate. The data is based on retrospective analysis of the MIRACLE trial to determine what major factors determined baseline A-V settings.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: May 11, 2010
    Assignee: Medtronic, Inc.
    Inventors: Edward Chinchoy, Nirav V. Sheth, Kathryn E. Hilpisch, Thomas J. Mullen, John E. Burnes
  • Patent number: 7192399
    Abstract: A medical device chronically monitors cardiac function in a patient. An input circuit of the medical device receives a pressure signal representative of a pressure sensed within a ventricle of the patient's heart as a function of time. A processor derives from the pressure signal a myocardial performance index based upon pressures in the ventricle. The processor then provides an output based upon the myocardial performance index.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: March 20, 2007
    Assignee: Medtronic, Inc.
    Inventors: Barbro M. Kjellstrom, Kathryn E. Hilpisch, Edward Chinchoy