Patents by Inventor Kathryn M.L. Taylor-Pashow

Kathryn M.L. Taylor-Pashow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180353935
    Abstract: A method of forming a high internal phase emulsion (HIPE) foam is provided. A nitroxide-containing monomer can be used in combination with other monomers that can then be used to make a high internal phase emulsion foam upon curing. The nitroxide group can subsequently be used to control the radical polymerization of many monomers, which can be grafted from the surface of the high internal phase emulsion foam. The resulting foam can be useful in performing separations of radioactive species, metals, metal ions, multi-element ions, metal complexes, halides, and organic chemical species in chemical process streams, clean-up operations, etc.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 13, 2018
    Inventors: Brian Benicewicz, Julia Pribyl, Thomas C. Shehee, Kathryn M. L. Taylor-Pashow
  • Patent number: 9597658
    Abstract: A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: March 21, 2017
    Assignees: Savannah River Nuclear Solutions, LLC, University of North Carolina-Chapel Hill, University of Chicago
    Inventors: Kathryn M. L. Taylor-Pashow, Wenbin Lin, Carter W. Abney
  • Patent number: 9145304
    Abstract: Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: September 29, 2015
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M. L. Taylor-Pashow, Mark C. Elvington
  • Publication number: 20150071980
    Abstract: Methods directed to the synthesis of metal nanoparticles are described. A formation process can be carried out at ambient temperature and pressure and includes the deposition of metal ions on a titanate carrier according to a chemical deposition process followed by exposure of the metal ions to a reducing agent. Upon the exposure, nanoparticles of the reduced metal are formed that are adhered to the titanate carrier.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M.L. Taylor-Pashow, Mark C. Elvington
  • Publication number: 20140319058
    Abstract: A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 30, 2014
    Inventors: Kathryn M.L. Taylor-Pashow, Wenbin Lin, Carter W. Abney
  • Publication number: 20140072804
    Abstract: Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 13, 2014
    Applicant: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M.L. Taylor-Pashow, Mark C. Elvington