Patents by Inventor Kathy S. Clear

Kathy S. Clear has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200094225
    Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Inventors: Max P. McDaniel, Kathy S. Clear
  • Publication number: 20200087430
    Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 19, 2020
    Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
  • Patent number: 10543480
    Abstract: A pre-catalyst composition comprising a) a silica support comprising silica wherein an amount of silica ranges from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support, b) a chromium-containing compound wherein an amount of chromium ranges from about 0.1 wt. % to about 5 wt. % based upon the amount of silica, c) a titanium-containing compound wherein an amount of titanium ranges from about 0.1 wt. % to about 20 wt. % based upon the amount of silica, d) a carboxylic acid wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid ranges from about 1:1 to about 1:10, and e) a nitrogen-containing compound with a molecular formula containing at least one nitrogen atom wherein an equivalent molar ratio of titanium-containing compound to nitrogen-containing compound ranges from about 1:0.5 to about 1:10.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: January 28, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20200010587
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 10513570
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 24, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190314787
    Abstract: A method of preparing a catalyst comprising a) drying a chrominated-silica support followed by contacting with a titanium(IV) alkoxide to form a metalized support, b) drying a metalized support followed by contacting with an aqueous alkaline solution comprising from about 3 wt. % to about 20 wt. % of a nitrogen-containing compound to form a hydrolyzed metalized support, and c) drying the hydrolyzed metalized support followed by calcination at a temperature in a range of from about 400° C. to about 1000° C. and maintaining the temperature in the range of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190314797
    Abstract: A pre-catalyst composition comprising a) a silica support comprising silica wherein an amount of silica ranges from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support, b) a chromium-containing compound wherein an amount of chromium ranges from about 0.1 wt. % to about 5 wt. % based upon the amount of silica, c) a titanium-containing compound wherein an amount of titanium ranges from about 0.1 wt. % to about 20 wt. % based upon the amount of silica, d) a carboxylic acid wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid ranges from about 1:1 to about 1:10, and e) a nitrogen-containing compound with a molecular formula containing at least one nitrogen atom wherein an equivalent molar ratio of titanium-containing compound to nitrogen-containing compound ranges from about 1:0.5 to about 1:10.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20190241685
    Abstract: A method of preparing a catalyst comprising a) contacting a titanium-containing compound, a solvating agent, and a solvent to form a solution; b) contacting the solution with a chrominated silica-support to form a pre-catalyst; and c) thermally treating the pre-catalyst by heating to a temperature of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190201872
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 10323108
    Abstract: A polymer having a long chain branching content peaking at greater than about 20 long chain branches per million carbon atoms, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 8 long chain branches per million carbon atoms, a polydispersity index of greater than about 20 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 1 long chain branches per chain, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 18, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Youlu Yu, Eric D. Schwerdtfeger, Max P. McDaniel, Alan L. Solenberger, Kathy S. Clear
  • Patent number: 10323109
    Abstract: A method of preparing a catalyst comprising a) contacting a titanium-containing compound, a solvating agent, and a solvent to form a solution; b) contacting the solution with a chrominated silica-support to form a pre-catalyst; and c) thermally treating the pre-catalyst by heating to a temperature of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 18, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190169321
    Abstract: Catalyst deactivating agents and compositions containing catalyst deactivating agents are disclosed. These catalyst deactivating agents can be used in methods of controlling polymerization reactions, methods of terminating polymerization reactions, methods of operating polymerization reactors, and methods of transitioning between catalyst systems.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Kathy S. Clear, Tony R. Crain, Timothy O. Odi
  • Publication number: 20190169332
    Abstract: Silica-coated alumina activator-supports, and catalyst compositions containing these activator-supports, are disclosed. Methods also are provided for preparing silica-coated alumina activator-supports, for preparing catalyst compositions, and for using the catalyst compositions to polymerize olefins.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Max P. McDaniel, Qing Yang, Randy S. Muninger, Elizabeth A. Benham, Kathy S. Clear
  • Patent number: 10300460
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: May 28, 2019
    Assignee: Chevron Phillips Chemical Company L.P.
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190153129
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Clear
  • Publication number: 20190153132
    Abstract: A method of preparing a catalyst comprising a) contacting a titanium-containing compound, a solvating agent, and a solvent to form a solution; b) contacting the solution with a chrominated silica-support to form a pre-catalyst; and c) thermally treating the pre-catalyst by heating to a temperature of from about 400 ° C. to about 1000 ° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190153133
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20190151826
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 10287369
    Abstract: A method comprising calcining a catalyst precursor comprising chromium and a silica support material at a temperature in the range of from about 95° C. to about 400° C. in a bed fluidized by a gas flowing at a volumetric flow rate of from about 2.5 to about 30 times the settled volume of the bed per minute to form a calcined catalyst precursor. A method comprising calcining a catalyst precursor comprising chromium and silica at a temperature in the range of from about 95° C. to about 400° C. with a gas flowing through the bed at a gas hourly space velocity of from about 15 to about 200 per hour. A method comprising calcining a catalyst precursor comprising chromium and silica at a temperature in the range of from about 95° C. to about 400° C. with a gas flowing through the bed at a weight hourly space velocity of from about 1.9 to about 240 per hour.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 14, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Eric D. Schwerdtfeger, Max P. McDaniel, Ted H. Cymbaluk, Jeremy M. Praetorius, Kathy S. Clear, Alan L. Solenberger
  • Publication number: 20190134610
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 9, 2019
    Inventors: Jeremy M. PRAETORIUS, Eric D. SCHWERDTFEGER, Max P. MCDANIEL, Ted H. CYMBALUK, Connor D. BOXELL, Alan L. SOLENBERGER, Kathy S. CLEAR