Patents by Inventor Katja Bierau

Katja Bierau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220064740
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 3, 2022
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaetan Otto, Maarten Penning
  • Patent number: 11149317
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: October 19, 2021
    Assignee: Exact Sciences Development Company, LLC
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaetan Otto, Maarten Penning
  • Patent number: 10808286
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: October 20, 2020
    Assignee: EXACT SCIENCES DEVELOPMENT COMPANY, LLC
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaetan Otto, Maarten Penning
  • Publication number: 20190032149
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Application
    Filed: October 8, 2018
    Publication date: January 31, 2019
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaetan Otto, Maarten Penning
  • Publication number: 20180327859
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 15, 2018
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaetan Otto, Maarten Penning
  • Patent number: 10053724
    Abstract: A real-time method of detecting the presence and/or amount of a methylated or unmethylated gene of interest in a DNA-containing sample, comprises the steps of: (a) contacting the DNA-containing sample with a reagent which selectively modifies unmethylated cytosine residues in the DNA to produce detectable modified residues but which does not modify methylated cytosine residues (b) amplifying at least a portion of the methylated or unmethylated gene of interest using at least one primer pair, at least one primer of which is designed to bind only to the sequence of methylated or unmethylated DNA following treatment with the reagent, wherein at least one primer in the primer pair produces a detectable fluorescence signal during amplification which is detected in real-time (c) quantifying the results of the real-time detection against a standard curve for the methylated or unmethylated gene of interest to produce an output of gene copy number.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: August 21, 2018
    Assignee: MDXHEALTH SA
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Patent number: 9982308
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: May 29, 2018
    Assignee: EXACT SCIENCES DEVELOPMENT COMPANY, LLC
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaëtan Otto, Maarten Penning
  • Publication number: 20160032368
    Abstract: A real-time method of detecting the presence and/or amount of a methylated or unmethylated gene of interest in a DNA-containing sample, comprises the steps of (a) contacting the DNA-containing sample with a reagent which selectively modifies unmethylated cytosine residues in the DNA to produce detectable modified residues but which does not modify methylated cytosine residues (b) amplifying at least a portion of the methylated or unmethylated gene of interest using at least one primer pair, at least one primer of which is designed to bind only to the sequence of methylated or unmethylated DNA following treatment with the reagent, wherein at least one primer in the primer pair produces a detectable fluorescence signal during amplification which is detected in real-time (c) quantifying the results of the real-time detection against a standard curve for the methylated or unmethylated gene of interest to produce an output of gene copy number.
    Type: Application
    Filed: June 8, 2015
    Publication date: February 4, 2016
    Applicant: MDXHEALTH SA
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Publication number: 20150240318
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging, or otherwise characterizing various diseases.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 27, 2015
    Applicant: MDxHealth SA
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaëtan Otto, Maarten Penning
  • Patent number: 9050280
    Abstract: A real-time method of detecting the presence and/or amount of a methylated or unmethylated gene of interest in a DNA-containing sample, comprises the steps of: (a) contacting the DNA-containing sample with a reagent which selectively modifies unmethylated cytosine residues in the DNA to produce detectable modified residues but which does not modify methylated cytosine residues (b) amplifying at least a portion of the methylated or unmethylated gene of interest using at least one primer pair, at least one primer of which is designed to bind only to the sequence of methylated or unmethylated DNA following treatment with the reagent, wherein at least one primer in the primer pair produces a detectable fluorescence signal during amplification which is detected in real-time (c) quantifying the results of the real-time detection against a standard curve for the methylated or unmethylated gene of interest to produce an output of gene copy number.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 9, 2015
    Assignee: MDxHealth SA
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Patent number: 8969046
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, S0X17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: March 3, 2015
    Assignee: MDxHealth SA
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaëtan Otto, Maarten Penning
  • Publication number: 20130302363
    Abstract: An oligonucleotide, primer or probe comprises the nucleotide sequences of any of SEQ ID NO. 5, 6, 7, 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 25. The oligonucleotides are useful for the detection of the methylation status of a gene, in particular the MAGE-A3 gene. The oligonucleotides are useful in primer pairs, kits and methods for determining the methylation status of the MAGE-A3 gene and for diagnosing cancer, directing therapy and selecting subjects for treatment. The primer or probe can comprise a loop or hairpin structure and can be used in real-time methylation specific PCR.
    Type: Application
    Filed: June 13, 2013
    Publication date: November 14, 2013
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Patent number: 8481700
    Abstract: An oligonucleotide, primer or probe comprises the nucleotide sequences of any of SEQ ID NO. 5, 6, 7, 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 25. The oligonucleotides are useful for the detection of the methylation status of a gene, in particular the MAGE-A3 gene. The oligonucleotides are useful in primer pairs, kits and methods for determining the methylation status of the MAGE-A3 gene and for diagnosing cancer, directing therapy and selecting subjects for treatment. The primer or probe can comprise a loop or hairpin structure and can be used in real-time methylation specific PCR.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: July 9, 2013
    Assignees: MDxHealth SA, GlaxoSmithKline Biologicals SA
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Publication number: 20110287416
    Abstract: A real-time method of detecting the presence and/or amount of a methylated or unmethylated gene of interest in a DNA-containing sample, comprises the steps of: (a) contacting the DNA-containing sample with a reagent which selectively modifies unmethylated cytosine residues in the DNA to produce detectable modified residues but which does not modify methylated cytosine residues (b) amplifying at least a portion of the methylated or unmethylated gene of interest using at least one primer pair, at least one primer of which is designed to bind only to the sequence of methylated or unmethylated DNA following treatment with the reagent, wherein at least one primer in the primer pair is a primer containing a step loop structure carrying a donor and an acceptor moiety of a molecular energy transfer pair arranged such that in the absence of amplification, the acceptor moiety quenches fluorescence emitted by the donor moiety upon excitation and during amplification, the stem loop structure is disrupted so as to separat
    Type: Application
    Filed: September 17, 2008
    Publication date: November 24, 2011
    Applicant: ONCOMETHYLOME SCIENCES SA
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Publication number: 20100280105
    Abstract: An oligonucleotide, primer or probe comprises the nucleotide sequences of any of SEQ ID NO. 5, 6, 7, 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 25. The oligonucleotides are useful for the detection of the methylation status of a gene, in particular the MAGE-A3 gene. The oligonucleotides are useful in primer pairs, kits and methods for determining the methylation status of the MAGE-A3 gene and for diagnosing cancer, directing therapy and selecting subjects for treatment. The primer or probe can comprise a loop or hairpin structure and can be used in real-time methylation specific PCR.
    Type: Application
    Filed: September 17, 2008
    Publication date: November 4, 2010
    Applicants: ONCOMETHYLOME SCIENCES SA, GLAXOSMITHKLINE BIOLOGICALS
    Inventors: Ilse Vlassenbroeck, Katja Bierau
  • Publication number: 20100144836
    Abstract: A method of detecting a predisposition to, or the incidence of, cancer in a sample comprises detecting an epigenetic change in at least one gene selected from an NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, 11112, BNIP3, FOXE1, SYNE1, S0X17, PHACTR3 and JAM3, wherein detection of the epigenetic change is indicative of a predisposition to, or the incidence of, cancer. Also described are pharmacogenetic methods for determining suitable treatment regimens for cancer and methods for treating cancer patients, based around selection of the patients according to the methods of the invention. The present invention is also concerned with improved methods of collecting, processing and analyzing samples, in particular body fluid samples. These methods may be useful in diagnosing, staging or otherwise characterizing various diseases.
    Type: Application
    Filed: January 9, 2008
    Publication date: June 10, 2010
    Applicant: ONCOMETHYLOME SCIENCES SA
    Inventors: Manon Van Engeland, Manon Adriaan De Bruine, Arjan Griffioen, Joost Louwagie, Katja Bierau, Gontran Brichard, Gaëtan Otto, Maarten Penning