Patents by Inventor Katja Langen

Katja Langen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11478665
    Abstract: Techniques for particle beam therapy include receiving a target region inside a subject for particle therapy, a minimum dose inside the target region, and a maximum dose inside the subject but outside target region. Multiple beam axis angles are determined, each involving a gantry angle and a couch position. Multiple spots within the target region are determined. For each beam axis angle a pristine particle scan beam (not coaxial with any other particle scan beam) is determined such that a Bragg Peak is directed to a spot, and repeated until every spot is subjected to a Bragg Peak or an intersection of two or more such pristine scan beams. Output data indicating the pristine beamlets is stored for operation of a particle beam therapy apparatus.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: October 25, 2022
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: James William Snider, III, William F. Regine, Mingyao Zhu, Katja Langen
  • Patent number: 10583313
    Abstract: The present disclosure relates to a new scan technique for particle radiation therapy that may be used for cancer treatment. One embodiment relates to a method of mitigating interplay effect in particle radiation therapy in a moving target including a period of movement, where the particle radiation therapy defines a planned dose in each spot of each layer of the moving target. The method comprising dividing the planned dose in each spot into a number of spot repaintings; and generating a scan pattern for each layer by defining a beam-on time at each spot for each spot repainting, and calculating a wait time between consecutive beam-on times to distribute the spot repaintings for each spot of a respective layer are distributed over a duration of an integer number of periods of movement.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: March 10, 2020
    Assignees: Varian Medical Systems Particle Therapy GmbH, University of Maryland, Baltimore
    Inventors: Per Rugaard Poulsen, John Eley, Ulrich Langner, Katja Langen
  • Publication number: 20200001118
    Abstract: Techniques for particle beam therapy include receiving a target region inside a subject for particle therapy, a minimum dose inside the target region, and a maximum dose inside the subject but outside target region. Multiple beam axis angles are determined, each involving a grantry angle and a couch position. Multiple spots within the target region are determined. For each beam axis angle a pristine particle scan beam (not coaxial with any other particle scan beam) is determined such that a Bragg Peak is directed to a spot, and repeated until every spot is subjected to a Bragg Peak or an intersection of two or more such pristine scan beams. Output data indicating the pristine beamlets is stored for operation of a particle beam therapy apparatus.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 2, 2020
    Inventors: James William Snider, III, William F. Regine, Mingyao Zhu, Katja Langen
  • Publication number: 20180280729
    Abstract: The present disclosure relates to a new scan technique for particle radiation therapy that may be used for cancer treatment. One embodiment relates to a method of mitigating interplay effect in particle radiation therapy in a moving target including a period of movement, where the particle radiation therapy defines a planned dose in each spot of each layer of the moving target. The method comprising dividing the planned dose in each spot into a number of spot repaintings; and generating a scan pattern for each layer by defining a beam-on time at each spot for each spot repainting, and calculating a wait time between consecutive beam-on times to distribute the spot repaintings for each spot of a respective layer are distributed over a duration of an integer number of periods of movement.
    Type: Application
    Filed: February 28, 2018
    Publication date: October 4, 2018
    Inventors: Per Rugaard POULSEN, John ELEY, Ulrich LANGNER, Katja LANGEN
  • Patent number: 8379794
    Abstract: The present invention provides a method for estimation of retrospective and real-time 3D target position by a single imager. The invention includes imaging a target on at least one 2D plane to determine 2D position and/or position components of the target, and resolving a position and/or position component along at least one imager axis of the target using a spatial probability density. The present invention provides a probability-based method for accurate estimation of the mean position, motion magnitude, motion correlation, and trajectory of a tumor from CBCT projections. The applicability of the method for tumors with periodic respiratory motion and for prostate are provided. Clinical feasibility is demonstrated for a pancreas tumor. The method includes monoscopic tracking of the 3D prostate position utilizing the spatial probability density to estimate the unresolved motion from the resolved motion. The method is applicable to prostate tracking even with a population-based probability density.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: February 19, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Per Rugaard Poulsen, Byungchul Cho, Katja Langen, Patrick Kupelian, Paul J. Keall
  • Publication number: 20100172469
    Abstract: The present invention provides a method for estimation of retrospective and real-time 3D target position by a single imager. The invention includes imaging a target on at least one 2D plane to determine 2D position and/or position components of the target, and resolving a position and/or position component along at least one imager axis of the target using a spatial probability density. The present invention provides a probability-based method for accurate estimation of the mean position, motion magnitude, motion correlation, and trajectory of a tumor from CBCT projections. The applicability of the method for tumors with periodic respiratory motion and for prostate are provided. Clinical feasibility is demonstrated for a pancreas tumor. The method includes monoscopic tracking of the 3D prostate position utilizing the spatial probability density to estimate the unresolved motion from the resolved motion. The method is applicable to prostate tracking even with a population-based probability density.
    Type: Application
    Filed: September 1, 2009
    Publication date: July 8, 2010
    Inventors: Per Rugaard Poulsen, Byungchul Cho, Katja Langen, Patrick Kupelian, Paul J. Keall