Patents by Inventor Katrin Freitag

Katrin Freitag has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10421228
    Abstract: Use of a composition comprising A) from 55 to 90% by weight of aluminum oxide, B) from 5 to 35% by weight of a sodium compound which at a pH of 7 at 20° C. has a solubility in water of ?300 g/l and can be converted by thermal means virtually exclusively into sodium oxide as only solid, C) from 0 to 15% by weight of a magnesium compound and/or a lithium compound selected from the group consisting of: magnesium oxide, magnesium carbonate, magnesium nitrate, lithium oxide, lithium carbonate, lithium nitrate and D) from 0 to 30% by weight of zirconium dioxide for producing a shaped ceramic body by extrusion.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: September 24, 2019
    Assignee: BASF SE
    Inventors: Anna K. Dürr, Günther Huber, Christian Eichholz, Katrin Freitag, Stefan Meuer
  • Patent number: 9957625
    Abstract: The invention relates to an electrode unit for an electrochemical device, comprising a solid electrolyte (3) and a porous electrode (7), the solid electrolyte (3) dividing a compartment for cathode material and a compartment for anode material and the porous electrode (7) being extensively connected to the solid electrolyte (3), with a displacer (23) being accommodated in the anode material compartment, where the displacer (23) is manufactured from a stainless steel or from graphite foil and bears resiliently against the internal geometry of the solid electrolyte (3) in such a way that the displacer (23) does not contact the solid electrolyte over its full area, or with the displacer comprising an outer shell (62) of stainless steel or graphite, and a core (64) of a nonferrous metal, the nonferrous metal being thermoplastically deformable at a temperature which is lower than the temperature at which the stainless steel is thermoplastically deformable, and where for production the shell (62) of stainless steel
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: May 1, 2018
    Inventors: Günther Huber, Jesus Enrique Zerpa Unda, Michael Lutz, Peter Heidebrecht, Domnik Bayer, Wolfgang Jabczynski, Anna Katharina Dürr, Katrin Freitag
  • Publication number: 20160221242
    Abstract: Use of a composition comprising A) from 55 to 90% by weight of aluminum oxide, B) from 5 to 35% by weight of a sodium compound which at a pH of 7 at 20° C. has a solubility in water of ?300 g/l and can be converted by thermal means virtually exclusively into sodium oxide as only solid, C) from 0 to 15% by weight of a magnesium compound and/or a lithium compound selected from the group consisting of: magnesium oxide, magnesium carbonate, magnesium nitrate, lithium oxide, lithium carbonate, lithium nitrate and D) from 0 to 30% by weight of zirconium dioxide for producing a shaped ceramic body by extrusion.
    Type: Application
    Filed: September 3, 2014
    Publication date: August 4, 2016
    Applicant: BASF SE
    Inventors: Anna K. DÜRR, Günther HUBER, Christian EICHHOLZ, Katrin FREITAG, Stefan MEUER
  • Publication number: 20140027300
    Abstract: Process for preparing an alkali metal from a salt of the alkali metal which is soluble in a solvent, including a first electrolysis, a concentration, and a second electrolysis. The first electrolysis produces a product mixture. This product mixture is then concentrated to give a largely solvent-free alkali metal (poly)sulfide melt. A second electrolysis at a temperature above the melting point of the alkali metal is then performed in a second electrolysis cell comprising an anode space and a cathode space, separated by a solid electrolyte which conducts alkali metal cations. The alkali metal (poly)sulfide melt from the concentration step is fed to the anode space. Sulfur is removed from the anode space and liquid alkali metal is removed from the cathode space.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: BASF SE
    Inventors: Günther Huber, Katrin Freitag, Anna Katharina Dürr, Jesus Enrique Zerpa Unda, Susanna Voges, Karolin Geyer
  • Publication number: 20140030577
    Abstract: The invention relates to an electrode unit for an electrochemical device, comprising a solid electrolyte (3) and a porous electrode (7), the solid electrolyte (3) dividing a compartment for cathode material and a compartment for anode material and the porous electrode (7) being extensively connected to the solid electrolyte (3), with a displacer (23) being accommodated in the anode material compartment, where the displacer (23) is manufactured from a stainless steel or from graphite foil and bears resiliently against the internal geometry of the solid electrolyte (3) in such a way that the displacer (23) does not contact the solid electrolyte over its full area, or with the displacer comprising an outer shell (62) of stainless steel or graphite, and a core (64) of a nonferrous metal, the nonferrous metal being thermoplastically deformable at a temperature which is lower than the temperature at which the stainless steel is thermoplastically deformable, and where for production the shell (62) of stainless steel
    Type: Application
    Filed: June 11, 2013
    Publication date: January 30, 2014
    Inventors: Günther Huber, Jesus Enrique Zerpa Unda, Michael Lutz, Peter Heidebrecht, Domnik Bayer, Wolfgang Jabczynski, Anna Katharina Dürr, Katrin Freitag
  • Publication number: 20130330634
    Abstract: The invention relates to an electrode unit for an electrochemical device for storing electrical energy, comprising a solid electrolyte (3) and a porous electrode (7), the solid electrolyte (3) dividing a compartment for cathode material and a compartment for anode material and the porous electrode (7) being extensively connected to the solid electrolyte (3) and the cathode material flowing along the porous electrode (7) during discharging. On the side remote from the solid electrolyte (3), the porous electrode (7) is covered towards the compartment for the cathode material with a segment wall (9), the segment wall (9) comprising inlet openings (15) in the direction of flow of the cathode material, through which the cathode material penetrates into the porous electrode (7), reacts chemically with the anode material in the porous electrode (7) and emerges back out of the porous electrode (7) through outlet openings (17) downstream in the direction of flow.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 12, 2013
    Inventors: Günther Huber, Jesus Enrique Zerpa Unda, Anna Katharina Dürr, Wolfgang Jabczynski, Katrin Freitag
  • Patent number: 8524191
    Abstract: A process for preparing aluminum oxide with a low calcium content, in which (1) crude alpha- and/or gamma-aluminum oxide with a total calcium content in the range from 50 to 2000 ppm, based on the crude alpha- and/or gamma-aluminum oxide, is mixed with an aqueous solution or suspension comprising the compounds selected from the group of inorganic acid, organic acid and complexing agent, (2) the mixture from step (1) is admixed with a flocculating aid, (3) in the mixture of step (2), the solids are separated from the liquid, (4) the solids separated are mixed with water in the presence or in the absence of a flocculating aid, (5) in the mixture of step (4), the solids are separated from the liquid, (6) optionally, steps (4) and (5) are repeated once or more than once, (7) optionally, the solids separated optionally after addition of further compounds, are dried.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: September 3, 2013
    Assignee: BASF SE
    Inventors: Marcus Georg Schrems, Anna Katharina Dürr, Günther Huber, Jesus Enrique Zerpa Unda, Katrin Freitag, Christian Eichholz, Franky Ruslim
  • Publication number: 20130040801
    Abstract: A process for preparing aluminum oxide with a low calcium content, in which (1) crude alpha- and/or gamma-aluminum oxide with a total calcium content in the range from 50 to 2000 ppm, based on the crude alpha- and/or gamma-aluminum oxide, is mixed with an aqueous solution or suspension comprising the compounds selected from the group of inorganic acid, organic acid and complexing agent, (2) the mixture from step (1) is admixed with a flocculating aid, (3) in the mixture of step (2), the solids are separated from the liquid, (4) the solids separated are mixed with water in the presence or in the absence of a flocculating aid, (5) in the mixture of step (4), the solids are separated from the liquid, (6) optionally, steps (4) and (5) are repeated once or more than once, (7) optionally, the solids separated optionally after addition of further compounds, are dried.
    Type: Application
    Filed: March 6, 2012
    Publication date: February 14, 2013
    Applicant: BASF SE
    Inventors: Marcus Georg Schrems, Anna Katharina Dürr, Günther Huber, Jesus Enrique Zerpa Unda, Katrin Freitag, Christian Eichholz, Franky Ruslim
  • Publication number: 20130040799
    Abstract: A process for preparing magnesium compounds by precipitation, in which an aqueous solution or suspension of a magnesium compound is mixed with a precipitant and the corresponding magnesium compound is precipitated wherein the aqueous solution or suspension of a magnesium compound is obtained by reaction of an organomagnesium compound with an aldehyde or a ketone or another electrophile and subsequent aqueous workup of the reaction mixture at a pH of at most 10 or from a magnesium salt with a maximum calcium content and/or potassium content of 200 ppm, based on the magnesium salt used.
    Type: Application
    Filed: March 6, 2012
    Publication date: February 14, 2013
    Applicant: BASF SE
    Inventors: Marcus Georg Schrems, Anna Katharina Dürr, Günther Huber, Jesus Enrique Zerpa Unda, Katrin Freitag, Michael Karcher, Axel Salden
  • Patent number: 8283277
    Abstract: The present invention relates to a coating material comprising (A) at least one binder as component (A) and (B) at least one photocatalytically active particle comprising a core composed of at least one first substance having a diameter of 0.1 to 1 ?m and at least one envelope at least partly surrounding the core and composed of at least one second substance having an average layer thickness of 0.1 to 10 nm as component (B).
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 9, 2012
    Assignee: BASF SE
    Inventors: Alexandra Seeber, Götz-Peter Schindler, Katrin Freitag, Ekkehard Jahns, Antonino Raffaele Addamo, Frank Kleine Jäger, Dirk Klingler
  • Publication number: 20110042326
    Abstract: The present invention relates to a method of purifying wastewater by contacting the wastewater which is to be purified with a rod-shaped TiO2 photocatalyst which has a BET surface area of 25 to 200 m2/g, a pore volume of 0.10 to 1.00 ml/g, and a median pore diameter of 0.005 to 0.050 ?m, with irradiation by light, and to the use of such a rod-shaped TiO2 photocatalyst which has a BET surface area of 25 to 200 m2/g, a pore volume of 0.10 to 1.00 ml/g, and a median pore diameter of 0.005 to 0.050 ?m, for purifying wastewater with irradiation by light.
    Type: Application
    Filed: April 30, 2009
    Publication date: February 24, 2011
    Applicant: BASF SE
    Inventors: Alexandra Seeber, Götz-Peter Schindler, Katrin Freitag, Reinhard Hess, Rudolf Piehl, Thilo Hahn, Thomas Hill, Michael Hesse, Piotr Makarczyk
  • Publication number: 20110003074
    Abstract: A process for the preparation of a metal-doped support material. The metal-doped support material comprises at least one metal in elemental form on at least one support material which is based on carbon by gas-phase deposition of at least one compound comprising the at least one metal in the oxidation state 0 in combination with carbon monoxide on the at least one support material and thermal decomposition of the at least one compound comprising the at least one metal in the oxidation state 0 in order to obtain the at least one metal in elemental form. During and after the deposition and the decomposition, the support material is not brought into contact with reducing compounds during the preparation.
    Type: Application
    Filed: February 26, 2009
    Publication date: January 6, 2011
    Applicant: BASF SE
    Inventors: Ralf Böhling, Jörg Pastre, Katrin Freitag
  • Publication number: 20100311572
    Abstract: The present invention relates to a coating material comprising (A) at least one binder as component (A) and (B) at least one photocatalytically active particle comprising a core composed of at least one first substance having a diameter of 0.1 to 1 ?m and at least one envelope at least partly surrounding the core and composed of at least one second substance having an average layer thickness of 0.1 to 10 nm as component (B).
    Type: Application
    Filed: August 27, 2008
    Publication date: December 9, 2010
    Applicant: BASF SE
    Inventors: Alexandra Seeber, Götz-Peter Schindler, Katrin Freitag, Ekkehard Jahns, Antonino Raffaele Addamo, Frank Kleine Jäger, Dirk Klingler
  • Publication number: 20100304143
    Abstract: The present invention relates to a process for producing coated nanoparticles comprising a core comprising at least one first substance and at least one envelope at least partly surrounding the core and composed of at least one further substance, in a streaming system, to nanoparticles which can be produced according to this process, to nanoparticles comprising a nonporous core comprising at least one first substance and at least one porous envelope at least partly surrounding the core and composed of at least one further substance, the nanoparticles having a narrow particle size distribution, to the use of such nanoparticles in photocatalysis and to apparatus for carrying out the process.
    Type: Application
    Filed: August 27, 2008
    Publication date: December 2, 2010
    Applicant: BASF SE
    Inventors: Alexandra Seeber, Götz-Peter Schindler, Katrin Freitag, Frank Jäger, Dirk Klingler, Frieder Borgmeier