Patents by Inventor Katsushi Miki
Katsushi Miki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160237234Abstract: Heat-expandable microspheres composed of a thermoplastic resin shell and a thermally-vaporizable blowing agent encapsulated therein, and having an average particle size ranging from 1 to 100 ?m. The amount of DMF-insoluble matter (G1) and the amount of DMF-MEK-insoluble matter (G2) constituting the heat-expandable microspheres satisfy 1.05<G2/G1. The expansion of the heat-expandable microspheres satisfy Hmax/Tmax?13 (?m/° C.) where Hmax and Tmax are as defined herein. Also disclosed in a process for producing the heat-expandable microspheres which includes preparing an aqueous suspension comprising oily globules dispersed in an aqueous dispersion medium containing a hydrophilic cross-linking agent, wherein the oily globules are made of an oily mixture comprising the blowing agent and a monomer component; and polymerizing the monomer component.Type: ApplicationFiled: October 2, 2014Publication date: August 18, 2016Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.Inventors: Naoya TAYAGAKI, Katsushi MIKI
-
Publication number: 20160160000Abstract: Provided is a process for efficiently producing heat-expandable microspheres having high solvent resistance. The process produces the heat-expandable microspheres composed of a shell of a thermoplastic resin and a blowing agent encapsulated therein and vaporizable by heating, and includes the steps of preparing an aqueous suspension by dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing, as an essential component, a peroxide A having a theoretical active oxygen content of at least 7.8%, and polymerizing the polymerizable component in the oily mixture.Type: ApplicationFiled: August 25, 2014Publication date: June 9, 2016Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.Inventors: Koichi SAKABE, Katsushi MIKI, Yasuyuki NOMURA
-
Patent number: 9126178Abstract: Heat-expandable microspheres having high heat resistance and high solvent resistance, a production process thereof include a shell of a thermoplastic resin and a thermally vaporizable blowing agent being encapsulated therein. The thermoplastic resin includes a copolymer produced by polymerizing a polymerizable component containing a carboxyl-group-containing monomer. The surface of the heat-expandable microspheres is treated with an organic compound containing a metal of the Groups from 3 to 12 in the Periodic Table.Type: GrantFiled: May 21, 2010Date of Patent: September 8, 2015Assignee: MATSUMOTO YUSHI-SEIYAKU CO., LTD.Inventors: Yu Kita, Katsushi Miki
-
Patent number: 8754141Abstract: A method that produces heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.Type: GrantFiled: October 9, 2012Date of Patent: June 17, 2014Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
-
Patent number: 8486531Abstract: The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.Type: GrantFiled: January 23, 2012Date of Patent: July 16, 2013Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
-
Patent number: 8329298Abstract: A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes, a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microsphres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.Type: GrantFiled: October 4, 2006Date of Patent: December 11, 2012Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
-
Patent number: 8324286Abstract: Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.Type: GrantFiled: November 16, 2006Date of Patent: December 4, 2012Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takeyoshi Fukuda, Takayuki Aoki, Satoshi Kawanami
-
Patent number: 8206826Abstract: A production method for heat-expandable microspheres, which have high expanding ratio and are thermally expanded into hollow particulates having excellent repeated-compression durability, and application thereof are provided. The method produces heat-expandable microspheres a shell of thermoplastic resin and a blowing agent being encapsulated therein and having a boiling point not higher than the softening point of the thermoplastic resin.Type: GrantFiled: May 14, 2008Date of Patent: June 26, 2012Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Hiroki Naito, Satoshi Kawanami, Katsushi Miki, Ikuo Yosejima, Kenichi Kitano
-
Publication number: 20120121907Abstract: The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.Type: ApplicationFiled: January 23, 2012Publication date: May 17, 2012Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.Inventors: Toshiaki MASUDA, Ichiro TAKAHARA, Kenichi KITANO, Katsushi MIKI, Takeshi INOHARA, Takayuki AOKI
-
Publication number: 20120080131Abstract: In heat-expandable microspheres as a starting material for hollow fine particles, which have excellent performances required for giving not only a durability in steady running region but also a durability in high-speed running region to a tire-rim assembly, and each consisting of an outer shell made of a thermoplastic resin obtained by polymerizing a monomer component in the presence of a polymerization initiator, and a foaming agent encapsulated in the outer shell and having a boiling point not higher than a softening point of the thermoplastic resin, the polymerization initiator comprises a peroxydicarbonate as an essential component, and the foaming agent comprises a fluorine-containing compound having an ether structure and a carbon number of 2-10 and containing no chlorine atom and bromine atom.Type: ApplicationFiled: November 21, 2011Publication date: April 5, 2012Applicants: MATSUMOTO YUSHI-SEIYAKU CO., LTD., BRIDGESTONE CORPORATIONInventors: Hiroyuki TERATANI, Toshiaki MASUDA, Kenichi KITANO, Katsushi MIKI, Takayuki AOKI, Takeshi INOHARA
-
Publication number: 20120064347Abstract: Heat-expandable microspheres having high heat resistance and high solvent resistance, a production process thereof include a shell of a thermoplastic resin and a thermally vaporizable blowing agent being encapsulated therein. The thermoplastic resin includes a copolymer produced by polymerizing a polymerizable component containing a carboxyl-group-containing monomer. The surface of the heat-expandable microspheres is treated with an organic compound containing a metal of the Groups from 3 to 12 in the Periodic Table.Type: ApplicationFiled: May 21, 2010Publication date: March 15, 2012Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.Inventors: Yu Kita, Katsushi Miki
-
Patent number: 8129020Abstract: Heat-expanded microspheres having high packing efficiency are produced by expanding heat-expandable microspheres, which include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.Type: GrantFiled: September 14, 2006Date of Patent: March 6, 2012Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
-
Patent number: 7994229Abstract: The present invention provides a process for producing thermo-expansive microspheres comprising a thermoplastic resinous shell and a blowing agent being encapsulated in the shell, the blowing agent which is a fluorine-containing C2-10 compound having ether linkage, being free of chlorine and bromine atoms and gasifying at a temperature not higher than the softening point of the thermoplastic resin. The thermo-expansive microspheres have preferably an average particle size ranging from 1 to 100 ?m and a CV, or coefficient of variation, of particle size distribution being 30% or less, and a retaining ratio of blowing agent encapsulated being 90% or more.Type: GrantFiled: February 6, 2008Date of Patent: August 9, 2011Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Katsushi Miki, Toshiaki Masuda, Ichiro Takahara, Takashi Fujie, Ikuo Yosejima
-
Patent number: 7807729Abstract: A production process for heat-expanded microspheres includes the step of providing a gaseous fluid containing heat-expandable microspheres, which includes a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 ?m. The gaseous fluid is fed through a gas-introducing tube having a dispersion nozzle on its outlet that is fixed inside a conduit having a hot gas flow flowing therethrough. A jet of the gaseous fluid is emitted through the dispersion nozzle. Further, the gaseous fluid is collided on a collision plate fixed under the dispersion nozzle so as to disperse the heat-expandable microspheres in the hot gas flow. The dispersed heat-expandable microspheres are heated in the hot gas flow at a temperature not lower than their expansion initiating temperature and thus expanded.Type: GrantFiled: November 15, 2004Date of Patent: October 5, 2010Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Takashi Fujie, Ichiro Takahara, Ikuo Yosejima, Katsushi Miki
-
Publication number: 20100180995Abstract: In heat-expandable microspheres as a starting material for hollow fine particles, which have excellent performances required for giving not only a durability in steady running region but also a durability in high-speed running region to a tire-rim assembly, and each consisting of an outer shell made of a thermoplastic resin obtained by polymerizing a monomer component in the presence of a polymerization initiator, and a foaming agent encapsulated in the outer shell and having a boiling point not higher than a softening point of the thermoplastic resin, the polymerization initiator comprises a peroxydicarbonate as an essential component, and the foaming agent comprises a fluorine-containing compound having an ether structure and a carbon number of 2-10 and containing no chlorine atom and bromine atom.Type: ApplicationFiled: October 24, 2006Publication date: July 22, 2010Inventors: Hiroyuki Teratani, Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takayuki Aoki, Takeshi Inohara
-
Publication number: 20100120929Abstract: A production method for heat-expandable microspheres, which have high expanding ratio and are thermally expanded into hollow particulates having excellent repeated-compression durability, and application thereof are provided. The method produces heat-expandable microspheres a shell of thermoplastic resin and a blowing agent being encapsulated therein and having a boiling point not higher than the softening point of the thermoplastic resin.Type: ApplicationFiled: May 14, 2008Publication date: May 13, 2010Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.Inventors: Hiroki Naito, Satoshi Kawanami, Katsushi Miki, Ikuo Yosejima, Kenichi Kitano
-
Publication number: 20090280328Abstract: The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.Type: ApplicationFiled: September 14, 2006Publication date: November 12, 2009Applicant: Matsumoto Yushi-Seiyaku Co. LtdInventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
-
Patent number: 7566498Abstract: Thermo-expansive microcapsule comprising: a polymeric shell produced by polymerizing 15 to 75 weight % of a nitrile monomer, 10 to 65 weight % of a monomer having a carboxyl group, 0.1 to 20 weight % of a monomer having an amide group and 0.1 to 20 weight % of a monomer having a cyclic structure in its side chain; and a blowing agent encapsulated in the polymeric shell.Type: GrantFiled: December 24, 2003Date of Patent: July 28, 2009Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Sachiko Tokumura, Kenichi Kitano, Toshiaki Masuda, Katsushi Miki
-
Publication number: 20090176098Abstract: A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.Type: ApplicationFiled: October 4, 2006Publication date: July 9, 2009Applicant: Matsumoto Yushi-Seiyaku Co., Ltd.Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
-
Publication number: 20090149559Abstract: Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.Type: ApplicationFiled: November 16, 2006Publication date: June 11, 2009Applicant: Matsumoto Yushi-Seiyaku Co., LtdInventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takeyoshi Fukuda, Takayuki Aoki, Satoshi Kawanami