Patents by Inventor Katsushi Miki

Katsushi Miki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9126178
    Abstract: Heat-expandable microspheres having high heat resistance and high solvent resistance, a production process thereof include a shell of a thermoplastic resin and a thermally vaporizable blowing agent being encapsulated therein. The thermoplastic resin includes a copolymer produced by polymerizing a polymerizable component containing a carboxyl-group-containing monomer. The surface of the heat-expandable microspheres is treated with an organic compound containing a metal of the Groups from 3 to 12 in the Periodic Table.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: September 8, 2015
    Assignee: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Yu Kita, Katsushi Miki
  • Patent number: 8754141
    Abstract: A method that produces heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: June 17, 2014
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 8486531
    Abstract: The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: July 16, 2013
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 8329298
    Abstract: A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes, a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microsphres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: December 11, 2012
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 8324286
    Abstract: Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: December 4, 2012
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takeyoshi Fukuda, Takayuki Aoki, Satoshi Kawanami
  • Patent number: 8206826
    Abstract: A production method for heat-expandable microspheres, which have high expanding ratio and are thermally expanded into hollow particulates having excellent repeated-compression durability, and application thereof are provided. The method produces heat-expandable microspheres a shell of thermoplastic resin and a blowing agent being encapsulated therein and having a boiling point not higher than the softening point of the thermoplastic resin.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: June 26, 2012
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Hiroki Naito, Satoshi Kawanami, Katsushi Miki, Ikuo Yosejima, Kenichi Kitano
  • Publication number: 20120121907
    Abstract: The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
    Type: Application
    Filed: January 23, 2012
    Publication date: May 17, 2012
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Toshiaki MASUDA, Ichiro TAKAHARA, Kenichi KITANO, Katsushi MIKI, Takeshi INOHARA, Takayuki AOKI
  • Publication number: 20120080131
    Abstract: In heat-expandable microspheres as a starting material for hollow fine particles, which have excellent performances required for giving not only a durability in steady running region but also a durability in high-speed running region to a tire-rim assembly, and each consisting of an outer shell made of a thermoplastic resin obtained by polymerizing a monomer component in the presence of a polymerization initiator, and a foaming agent encapsulated in the outer shell and having a boiling point not higher than a softening point of the thermoplastic resin, the polymerization initiator comprises a peroxydicarbonate as an essential component, and the foaming agent comprises a fluorine-containing compound having an ether structure and a carbon number of 2-10 and containing no chlorine atom and bromine atom.
    Type: Application
    Filed: November 21, 2011
    Publication date: April 5, 2012
    Applicants: MATSUMOTO YUSHI-SEIYAKU CO., LTD., BRIDGESTONE CORPORATION
    Inventors: Hiroyuki TERATANI, Toshiaki MASUDA, Kenichi KITANO, Katsushi MIKI, Takayuki AOKI, Takeshi INOHARA
  • Publication number: 20120064347
    Abstract: Heat-expandable microspheres having high heat resistance and high solvent resistance, a production process thereof include a shell of a thermoplastic resin and a thermally vaporizable blowing agent being encapsulated therein. The thermoplastic resin includes a copolymer produced by polymerizing a polymerizable component containing a carboxyl-group-containing monomer. The surface of the heat-expandable microspheres is treated with an organic compound containing a metal of the Groups from 3 to 12 in the Periodic Table.
    Type: Application
    Filed: May 21, 2010
    Publication date: March 15, 2012
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Yu Kita, Katsushi Miki
  • Patent number: 8129020
    Abstract: Heat-expanded microspheres having high packing efficiency are produced by expanding heat-expandable microspheres, which include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: March 6, 2012
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 7994229
    Abstract: The present invention provides a process for producing thermo-expansive microspheres comprising a thermoplastic resinous shell and a blowing agent being encapsulated in the shell, the blowing agent which is a fluorine-containing C2-10 compound having ether linkage, being free of chlorine and bromine atoms and gasifying at a temperature not higher than the softening point of the thermoplastic resin. The thermo-expansive microspheres have preferably an average particle size ranging from 1 to 100 ?m and a CV, or coefficient of variation, of particle size distribution being 30% or less, and a retaining ratio of blowing agent encapsulated being 90% or more.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 9, 2011
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Katsushi Miki, Toshiaki Masuda, Ichiro Takahara, Takashi Fujie, Ikuo Yosejima
  • Patent number: 7807729
    Abstract: A production process for heat-expanded microspheres includes the step of providing a gaseous fluid containing heat-expandable microspheres, which includes a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 ?m. The gaseous fluid is fed through a gas-introducing tube having a dispersion nozzle on its outlet that is fixed inside a conduit having a hot gas flow flowing therethrough. A jet of the gaseous fluid is emitted through the dispersion nozzle. Further, the gaseous fluid is collided on a collision plate fixed under the dispersion nozzle so as to disperse the heat-expandable microspheres in the hot gas flow. The dispersed heat-expandable microspheres are heated in the hot gas flow at a temperature not lower than their expansion initiating temperature and thus expanded.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: October 5, 2010
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Takashi Fujie, Ichiro Takahara, Ikuo Yosejima, Katsushi Miki
  • Publication number: 20100180995
    Abstract: In heat-expandable microspheres as a starting material for hollow fine particles, which have excellent performances required for giving not only a durability in steady running region but also a durability in high-speed running region to a tire-rim assembly, and each consisting of an outer shell made of a thermoplastic resin obtained by polymerizing a monomer component in the presence of a polymerization initiator, and a foaming agent encapsulated in the outer shell and having a boiling point not higher than a softening point of the thermoplastic resin, the polymerization initiator comprises a peroxydicarbonate as an essential component, and the foaming agent comprises a fluorine-containing compound having an ether structure and a carbon number of 2-10 and containing no chlorine atom and bromine atom.
    Type: Application
    Filed: October 24, 2006
    Publication date: July 22, 2010
    Inventors: Hiroyuki Teratani, Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takayuki Aoki, Takeshi Inohara
  • Publication number: 20100120929
    Abstract: A production method for heat-expandable microspheres, which have high expanding ratio and are thermally expanded into hollow particulates having excellent repeated-compression durability, and application thereof are provided. The method produces heat-expandable microspheres a shell of thermoplastic resin and a blowing agent being encapsulated therein and having a boiling point not higher than the softening point of the thermoplastic resin.
    Type: Application
    Filed: May 14, 2008
    Publication date: May 13, 2010
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Hiroki Naito, Satoshi Kawanami, Katsushi Miki, Ikuo Yosejima, Kenichi Kitano
  • Publication number: 20090280328
    Abstract: The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
    Type: Application
    Filed: September 14, 2006
    Publication date: November 12, 2009
    Applicant: Matsumoto Yushi-Seiyaku Co. Ltd
    Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 7566498
    Abstract: Thermo-expansive microcapsule comprising: a polymeric shell produced by polymerizing 15 to 75 weight % of a nitrile monomer, 10 to 65 weight % of a monomer having a carboxyl group, 0.1 to 20 weight % of a monomer having an amide group and 0.1 to 20 weight % of a monomer having a cyclic structure in its side chain; and a blowing agent encapsulated in the polymeric shell.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: July 28, 2009
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Sachiko Tokumura, Kenichi Kitano, Toshiaki Masuda, Katsushi Miki
  • Publication number: 20090176098
    Abstract: A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
    Type: Application
    Filed: October 4, 2006
    Publication date: July 9, 2009
    Applicant: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Publication number: 20090149559
    Abstract: Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
    Type: Application
    Filed: November 16, 2006
    Publication date: June 11, 2009
    Applicant: Matsumoto Yushi-Seiyaku Co., Ltd
    Inventors: Toshiaki Masuda, Ichiro Takahara, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takeyoshi Fukuda, Takayuki Aoki, Satoshi Kawanami
  • Publication number: 20080293838
    Abstract: The present invention provides a process for producing thermo-expansive microspheres comprising a thermoplastic resinous shell and a blowing agent being encapsulated in the shell, the blowing agent which is a fluorine-containing C2-10 compound having ether linkage, being free of chlorine and bromine atoms and gasifying at a temperature not higher than the softening point of the thermoplastic resin. The thermo-expansive microspheres have preferably an average particle size ranging from 1 to 100 ?m and a CV, or coefficient of variation, of particle size distribution being 30% or less, and a retaining ratio of blowing agent encapsulated being 90% or more.
    Type: Application
    Filed: February 6, 2008
    Publication date: November 27, 2008
    Inventors: Katsushi Miki, Toshiaki Masuda, Ichiro Takahara, Takashi Fujie, Ikuo Yosejima
  • Patent number: 7351752
    Abstract: The present invention provides thermo-expansive microspheres comprising thermoplastic resinous shell and a blowing agent being encapsulated in the shell, the blowing agent which is a fluorine-containing C2-10 compound having ether linkage, being free of chlorine and bromine atoms and gasifying at a temperature not higher than the softening point of the thermoplastic resin; and also provides the production and application processes thereof. The thermo-expansive microspheres have preferably an average particle size ranging from 1 to 100 ?m and a CV, or coefficient of variation, of particle size distribution being 30% or less, and a retaining ratio of blowing agent encapsulated being 90% or more. The thermo-expansive microspheres have low environmental loading and superior flame-retardant or flame-resistant performance, and have particle sizes distributing in narrow ranges.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: April 1, 2008
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Katsushi Miki, Toshiaki Masuda, Ichiro Takahara, Takashi Fujie, Ikuo Yosejima