Patents by Inventor Katsutoshi Kawai

Katsutoshi Kawai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240012114
    Abstract: An electromagnetic wave detection apparatus comprises an irradiator configured to emit electromagnetic waves; a switch comprising an action surface with a plurality of pixels disposed thereon, the switch being configured to switch each pixel between a first state of causing electromagnetic waves, including reflected waves, from an object, of electromagnetic waves irradiated from the irradiator, incident on the action surface to travel in a first direction and a second state of causing the electromagnetic waves incident on the action surface to travel in a second direction; a first detector configured to detect the electromagnetic waves that travel in the first direction; and a second detector configured to detect the electromagnetic waves that travel in the second direction. Also, the switch is configured to switch each of the plurality of pixels between the first and second states according to an irradiation region of the electromagnetic waves emitted from the irradiator.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 11, 2024
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Patent number: 11835653
    Abstract: An electromagnetic wave detection apparatus (10) includes a switch (16), a first detector (19), and a second detector (20). The switch (16) includes an action surface (as) with a plurality of pixels (px) disposed thereon. The switch (16) is configured to switch each pixel (px) between the first state and the second state. In the first state, the pixels (px) cause electromagnetic waves incident on the action surface (as) to travel in a first direction (d1). In the second state, the pixels (px) cause the electromagnetic waves incident on the action surface (as) to travel in a second direction (d2). The first detector (19) detects the electromagnetic waves that travel in the first direction (d1). The second detector (20) detects the electromagnetic waves that travel in the second direction (d2).
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: December 5, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11796641
    Abstract: An electromagnetic wave detection apparatus (10) includes a switch (16), a first detector (19), and a second detector (20). The switch (16) includes an action surface (as) with a plurality of pixels (px) disposed thereon. The switch (16) is configured to switch each pixel (px) between the first state and the second state. In the first state, the pixels (px) cause electromagnetic waves incident on the action surface (as) to travel in a first direction (d1). In the second state, the pixels (px) cause the electromagnetic waves incident on the action surface (as) to travel in a second direction (d2). The first detector (19) detects the electromagnetic waves that travel in the first direction (d1). The second detector (20) detects the electromagnetic waves that travel in the second direction (d2).
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 24, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11754678
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated onto an object (ob). The memory (13) stores related information. The related information is information associating any two of the emission direction of the electromagnetic waves and elements defining two points on a path. The path refers to a path of the electromagnetic waves emitted from the irradiator (11) to the first detector (17) via the object (ob). The controller (14) updates the related information based on the emission direction of the electromagnetic waves and the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: September 12, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11573301
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (19), and a controller (20). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated on an object (ob). The memory (19) stores first related information including an emission direction of the emitted electromagnetic waves. The controller (20) updates the first related information based on the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 7, 2023
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11408982
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves towards the first detector (17). The memory (13) stores information related to the emission direction of the electromagnetic waves. The controller (14) updates the information related to the emission direction based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: August 9, 2022
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Patent number: 11194021
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves of the electromagnetic waves towards the first detector (17). The memory (13) stores related information. The controller (14) updates the related information based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: December 7, 2021
    Assignee: KYOCERA Corporation
    Inventors: Hiroki Okada, Eri Uchida, Hiroyuki Minagawa, Yoshiteru Takayama, Mitsuo Ono, Atsushi Hasebe, Katsutoshi Kawai, Yukitoshi Kanayama
  • Publication number: 20200233067
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (19), and a controller (20). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated on an object (ob). The memory (19) stores first related information including an emission direction of the emitted electromagnetic waves. The controller (20) updates the first related information based on the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Application
    Filed: February 8, 2018
    Publication date: July 23, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200096616
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves towards the first detector (17). The memory (13) stores information related to the emission direction of the electromagnetic waves. The controller (14) updates the information related to the emission direction based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Application
    Filed: March 5, 2018
    Publication date: March 26, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200033116
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a propagation unit (20), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) detects reflected waves of the electromagnetic waves irradiated onto an object (ob). The propagation unit (20) includes propagation elements (px). By irradiation position of the electromagnetic waves irradiated onto the object (ob), the propagation elements (px) switch between propagating and not propagating the reflected waves of the electromagnetic waves towards the first detector (17). The memory (13) stores related information. The controller (14) updates the related information based on the position of the propagation element (px) that is propagating the reflected waves toward the first detector (17) when the first detector (17) detects the reflected waves.
    Type: Application
    Filed: March 16, 2018
    Publication date: January 30, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200018858
    Abstract: An electromagnetic wave detection apparatus (10) includes an irradiator (11), a first detector (17), a memory (13), and a controller (14). The irradiator (11) irradiates electromagnetic waves. The first detector (17) includes detection elements. The detection elements detect, by irradiation position, reflected waves of the electromagnetic waves irradiated onto an object (ob). The memory (13) stores related information. The related information is information associating any two of the emission direction of the electromagnetic waves and elements defining two points on a path. The path refers to a path of the electromagnetic waves emitted from the irradiator (11) to the first detector (17) via the object (ob). The controller (14) updates the related information based on the emission direction of the electromagnetic waves and the position of the detection element, among the detection elements, that detects the reflected waves of the electromagnetic waves.
    Type: Application
    Filed: March 1, 2018
    Publication date: January 16, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Publication number: 20200003893
    Abstract: An electromagnetic wave detection apparatus (10) includes a switch (16), a first detector (19), and a second detector (20). The switch (16) includes an action surface (as) with a plurality of pixels (px) disposed thereon. The switch (16) is configured to switch each pixel (px) between the first state and the second state. In the first state, the pixels (px) cause electromagnetic waves incident on the action surface (as) to travel in a first direction (dl). In the second state, the pixels (px) cause the electromagnetic waves incident on the action surface (as) to travel in a second direction (d2). The first detector (19) detects the electromagnetic waves that travel in the first direction (dl). The second detector (20) detects the electromagnetic waves that travel in the second direction (d2).
    Type: Application
    Filed: January 26, 2018
    Publication date: January 2, 2020
    Applicant: KYOCERA Corporation
    Inventors: Hiroki OKADA, Eri UCHIDA, Hiroyuki MINAGAWA, Yoshiteru TAKAYAMA, Mitsuo ONO, Atsushi HASEBE, Katsutoshi KAWAI, Yukitoshi KANAYAMA
  • Patent number: 8036165
    Abstract: The quality of signals during SDMA is raised. In an uplink, a signal processing unit receives signals respectively from a plurality of terminal apparatuses which have been multiple-accessed by division of time. It derives receiving channel characteristics corresponding to the plurality of terminal apparatuses, respectively, for each time slot. In a downlink, the signal processing unit derives transmitting channel characteristics from the receiving channel characteristics derived and, based on the transmitting channel characteristics derived, it transmits signals respectively to the plurality of terminal apparatuses to which SDMA has been performed.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 11, 2011
    Assignee: Kyocera Corporation
    Inventors: Takeo Miyata, Katsutoshi Kawai
  • Patent number: 7912163
    Abstract: The A/D converter changes sampling timing of a received signal in a synchronization acquisition mode and a synchronization tracking mode. The A/D converter generates an internal clock of a sampling frequency eight times a symbol rate under the control of the clock control unit in the synchronization acquisition mode. On the other hand, in the synchronization tracking mode, the A/D converter generates an internal clock with a symbol point and one each point before and after the symbol point as sampling timing under the control of the clock control unit. The A/D converter further corrects the sampling timing of the symbol point based on the squares of the maximum value of a correlation value between the received signal and a reference signal and the absolute values of correlation values before and after the maximum value.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: March 22, 2011
    Assignee: Kyocera Corporation
    Inventor: Katsutoshi Kawai
  • Publication number: 20080112510
    Abstract: In a radio reception apparatus compatible with adaptive modulation, based on a received IQ signal processed by a reception processing unit, a determining unit calculates EVM that corresponds to a magnitude of shift-off between a true symbol point and the received symbol point. The calculated EVM is averaged and thereafter applied to a control unit. The control unit compares the applied EVM with a prescribed threshold value, and determines with high accuracy, switching among a plurality of modulation methods having different multi-value numbers.
    Type: Application
    Filed: January 2, 2008
    Publication date: May 15, 2008
    Applicants: SANYO ELECTRIC CO., LTD., SANYO TELECOMMUNICATIONS CO., LTD.
    Inventors: Seigo Nakao, Katsutoshi Kawai
  • Patent number: 7333566
    Abstract: In a radio reception apparatus compatible with adaptive modulation, based on a received IQ signal processed by a reception processing unit, a determining unit calculates EVM that corresponds to a magnitude of shift-off between a true symbol point and the received symbol point. The calculated EVM is averaged and thereafter applied to a control unit. The control unit compares the applied EVM with a prescribed threshold value, and determines with high accuracy, switching among a plurality of modulation methods having different multi-value numbers.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: February 19, 2008
    Assignees: Sanyo Electric Co., Ltd, Sanyo Telecommunications Co., Ltd
    Inventors: Seigo Nakao, Katsutoshi Kawai
  • Publication number: 20070274335
    Abstract: The quality of signals during SDMA is raised. In an uplink, a signal processing unit receives signals respectively from a plurality of terminal apparatuses which have been multiple-accessed by division of time. It derives receiving channel characteristics corresponding to the plurality of terminal apparatuses, respectively, for each time slot. In a downlink, the signal processing unit derives transmitting channel characteristics from the receiving channel characteristics derived and, based on the transmitting channel characteristics derived, it transmits signals respectively to the plurality of terminal apparatuses to which SDMA has been performed.
    Type: Application
    Filed: May 16, 2005
    Publication date: November 29, 2007
    Inventors: Takeo Miyata, Katsutoshi Kawai
  • Patent number: 7209713
    Abstract: A transmission weight vector computing unit computes transmission weight vectors. A transmission weight vector correcting unit obtains a corrected transmission weight vector W?(t). A predicted receiving power computing unit computes a predicted receiving power value Y(t). If a difference between the predicted receiving power value Y(t) and a predicted receiving power value in the past Y(t-T) is less than a threshold value, an update unit selects the corrected transmission weight vector W?(t). If, on the other hand, the difference is greater or equal to the threshold value, the update unit selects a corrected weight vector in the past W?(t-xT). If the modulation method is QPSK, a setting unit selects the transmission weight vector W(t). If the modulation method is 16 QAM, the setting unit selects the corrected transmission weight vector W?(t) or W?(t-xT) and outputs it as a final transmission weight vector signal.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: April 24, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Seigo Nakao, Katsutoshi Kawai
  • Publication number: 20070014389
    Abstract: The A/D converter changes sampling timing of a received signal in a synchronization acquisition mode and a synchronization tracking mode. The A/D converter generates an internal clock of a sampling frequency eight times a symbol rate under the control of the clock control unit in the synchronization acquisition mode. On the other hand, in the synchronization tracking mode, the A/D converter generates an internal clock with a symbol point and one each point before and after the symbol point as sampling timing under the control of the clock control unit. The A/D converter further corrects the sampling timing of the symbol point based on the squares of the maximum value of a correlation value between the received signal and a reference signal and the absolute values of correlation values before and after the maximum value.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 18, 2007
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Katsutoshi Kawai
  • Patent number: 7149491
    Abstract: In a radio reception apparatus, a quadrature detector provides its digital output signal to a band-limiting filter after lowering a sampling frequency by a sampling frequency converter. Based on a correlation value obtained from an output of the band-limiting filter by a symbol timing detecting circuit, a symbol timing deviation detecting circuit detects a magnitude and a direction of a deviation of the timing of sampling in the sampling frequency converter, and controls timing of the sampling in the sampling frequency converter. Thereby, a symbol point of the correct timing is extracted.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: December 12, 2006
    Assignees: Sanyo Electric Co., Ltd., Sanyo Telecommunications Co., Ltd
    Inventors: Katsutoshi Kawai, Nobuhiro Masaoka