Patents by Inventor Katsutoshi Sugawara

Katsutoshi Sugawara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250120160
    Abstract: The present invention relates to a semiconductor device having trench gates. The semiconductor device includes the following: a first semiconductor layer; a first semiconductor region selectively disposed in the upper layer of the first semiconductor layer; a second semiconductor region in contact with the first semiconductor region; a third semiconductor region on the bottom surfaces of the first and second semiconductor regions; gate trenches provided to penetrate the first and third semiconductor regions in the thickness direction of the first and third semiconductor regions to reach the inside of the first semiconductor layer; a field-reducing region on the bottom of each gate trench; and connection layers arranged in the first semiconductor layer at intervals so as to be each in contact with at least one of sidewalls of the gate trenches, the connection layers each electrically connecting the field-reducing region to the third semiconductor region.
    Type: Application
    Filed: December 17, 2024
    Publication date: April 10, 2025
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yutaka FUKUI, Katsutoshi SUGAWARA, Hideyuki HATTA, Hidenori KOKETSU, Rina TANAKA, Yusuke MIYATA
  • Patent number: 12266706
    Abstract: The present invention relates to a semiconductor device having trench gates. The semiconductor device includes the following: a first semiconductor layer; a first semiconductor region selectively disposed in the upper layer of the first semiconductor layer; a second semiconductor region in contact with the first semiconductor region; a third semiconductor region on the bottom surfaces of the first and second semiconductor regions; gate trenches provided to penetrate the first and third semiconductor regions in the thickness direction of the first and third semiconductor regions to reach the inside of the first semiconductor layer; a field-reducing region on the bottom of each gate trench; and connection layers arranged in the first semiconductor layer at intervals so as to be each in contact with at least one of sidewalls of the gate trenches, the connection layers each electrically connecting the field-reducing region to the third semiconductor region.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: April 1, 2025
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yutaka Fukui, Katsutoshi Sugawara, Hideyuki Hatta, Hidenori Koketsu, Rina Tanaka, Yusuke Miyata
  • Publication number: 20240355922
    Abstract: A semiconductor device includes: a drift layer of a first conductivity type; well layers of a second conductivity type; a source layer of a first conductivity type; a gate electrode; an interlayer insulating film; and a source electrode, in which a plurality of body diodes constituted by the well layer and the drift layer at positions not overlapping with the gate electrode in plan view include a first operation portion that operates at a first body diode operation voltage and a plurality of second operation portions that operate at a second body diode operation voltage lower than the first body diode operation voltage.
    Type: Application
    Filed: January 16, 2024
    Publication date: October 24, 2024
    Applicant: Mitsubishi Electric Corporation
    Inventors: Katsutoshi SUGAWARA, Kotaro KAWAHARA, Akifumi IIJIMA, Shiro HINO, Katsuhiro FUJIYOSHI
  • Patent number: 12107158
    Abstract: An object of the present disclosure is to suppress decrease in withstand voltage and increase in ON voltage and to increase body diode current. An SiC-MOSFET includes: a source region formed on a surface layer of a base region; a gate electrode facing a channel region which is a region of the base region sandwiched between a drift layer and the source region via a gate insulating film; a source electrode having electrically contact with the source region; and a plurality of first embedded regions of a second conductivity type formed adjacent to a lower surface of the base region. The plurality of first embedded regions are formed immediately below at least both end portions of the base region, and three or more first embedded regions are formed to be separated from each other.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: October 1, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Katsutoshi Sugawara, Yasuhiro Kagawa, Yutaka Fukui
  • Publication number: 20240297229
    Abstract: In a silicon carbide semiconductor device, in a plan view, a plurality of source contact holes is intermittently provided in a second direction along a trench gate, and a source electrode is provided on an insulating film and is electrically connected to a source layer via the plurality of source contact holes. Intermittent recesses reflecting the shapes of the plurality of source contact holes are provided on a surface of the source electrode on a side opposite to the semiconductor substrate.
    Type: Application
    Filed: December 1, 2023
    Publication date: September 5, 2024
    Applicant: Mitsubishi Electric Corporation
    Inventors: Motoru YOSHIDA, Katsutoshi SUGAWARA, Yoshitaka KIMURA, Yutaka FUKUI, Tetsuo TAKAHASHI
  • Patent number: 12051744
    Abstract: An object is to provide a technique capable of reducing a parasitic capacitance in a semiconductor device with high accuracy. A semiconductor device includes: a base region; a source region; a second trench passing through the base region to reach the drift layer; a second protective layer disposed in a bottom portion of the second trench; a source electrode, at least part of which is disposed in the second trench, to be electrically connected to a first protective layer, the base region, and the source region; and a source side connection layer of a second conductivity type constituting at least part of a lateral portion of the second trench and connected to the base region and the second protective layer.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 30, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Katsutoshi Sugawara, Yutaka Fukui, Rina Tanaka, Hideyuki Hatta
  • Patent number: 11894428
    Abstract: The present invention relates to a silicon carbide semiconductor device that includes a Schottky barrier diode in a field-effect transistor and includes a first trench provided through first and second semiconductor regions in a thickness direction and reaches inside a semiconductor layer, a second trench provided through the second semiconductor region in the thickness direction and reaches inside the semiconductor layer, a gate electrode embedded in the first trench via a gate insulating film, a Schottky barrier diode electrode embedded in the second trench, a first low-resistance layer having contact with a trench side wall of the first trench, and a second low-resistance layer having contact with a trench side wall of the second trench. The second low-resistance layer has an impurity concentration that is higher than the impurity concentration in the semiconductor layer and lower than the impurity concentration in the first low-resistance layer.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: February 6, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hideyuki Hatta, Rina Tanaka, Katsutoshi Sugawara, Yutaka Fukui
  • Publication number: 20230411448
    Abstract: A semiconductor device includes a plurality of trenches penetrating through a source region and a base region, and a mesa region as a region between two of the plurality of trenches. A gate electrode that faces the base region with a gate insulating film interposed between the gate electrode and the base region is formed in each trench. An electric field relieving layer is provided immediately below each trench. A super junction structure in which a first pillar layer and a second pillar layer are alternately arranged is formed between the base region and the drift layer. A width of the first pillar layer is equal to or less than a width of the electric field relieving layer.
    Type: Application
    Filed: April 11, 2023
    Publication date: December 21, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Katsutoshi SUGAWARA, Yutaka FUKUI, Kohei ADACHI, Kazuya ISHIBASHI
  • Patent number: 11848358
    Abstract: A drift layer is made of silicon carbide and has a first conductivity type. At least one trench has a first side surface facing a Schottky barrier diode region, and a second side surface extending in a transistor region and contacting a source region, a body region, and the drift layer. A first protective region is provided under the at least one trench, has a second conductivity type, and is higher in impurity concentration of the second conductivity type than the body region. A second protective region extends from the first protective region, reaches at least one of the first side surface and an end region of the second side surface continuous with the first side surface, has an uppermost portion shallower than a lowermost portion of the body region, and is higher in impurity concentration of the second conductivity type than the body region.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 19, 2023
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Rina Tanaka, Katsutoshi Sugawara, Yutaka Fukui, Hideyuki Hatta, Yusuke Miyata
  • Publication number: 20230231017
    Abstract: A semiconductor device has a cell region, a dividing region dividing the cell region in an expanding direction of a stacking fault band, and a termination region, and includes in a dividing region, a semiconductor layer including a drift region of a first conductivity type and a second well region of a second conductivity type provided in an upper portion of the drift region, a second interlayer insulating film provided on the semiconductor layer, and a source electrode provided on the second interlayer insulating film. The second interlayer insulating film has two second contact holes aligned in an expanding direction of stacking fault band and electrically connecting the source electrode to the second well region. The second well region is formed as one region continuous in the expanding direction of stacking fault band in the region interposed between the two second contact holes in top view.
    Type: Application
    Filed: October 31, 2022
    Publication date: July 20, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kazuya ISHIBASHI, Katsutoshi SUGAWARA
  • Patent number: 11658238
    Abstract: A semiconductor device includes a trench-type switching element formed in an active region and a trench-type current sense element formed in a current sense region. Below a trench in which a gate electrode of the switching element is embedded, a trench in which a gate electrode of the current sense element is embedded, and a trench formed at the boundary portion between the active region and the current sense region, protective layers are formed, respectively. The protective layer at the boundary portion between the active region and the current sense region has a divided portion that is divided in a direction from the active region to the current sense region.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: May 23, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Katsutoshi Sugawara, Yasuhiro Kagawa, Yutaka Fukui
  • Patent number: 11637184
    Abstract: A drift layer is formed of silicon carbide and has a first conductivity type. A trench bottom protective layer is provided on a bottom portion of a gate trench and has a second conductivity type. A depletion suppressing layer is provided between a side surface of the gate trench and the drift layer, extends from a lower portion of a body region up to a position deeper than the bottom portion of the gate trench, has the first conductivity type, and has an impurity concentration of the first conductivity type higher than that of the drift layer. The impurity concentration of the first conductivity type of the depletion suppressing layer is reduced as the distance from the side surface of the gate trench becomes larger.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 25, 2023
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kohei Adachi, Katsutoshi Sugawara, Yutaka Fukui, Hideyuki Hatta, Rina Tanaka
  • Publication number: 20220293783
    Abstract: An object of the present disclosure is to suppress decrease in withstand voltage and increase in ON voltage and to increase body diode current. An SiC-MOSFET includes: a source region formed on a surface layer of a base region; a gate electrode facing a channel region which is a region of the base region sandwiched between a drift layer and the source region via a gate insulating film; a source electrode having electrically contact with the source region; and a plurality of first embedded regions of a second conductivity type formed adjacent to a lower surface of the base region. The plurality of first embedded regions are formed immediately below at least both end portions of the base region, and three or more first embedded regions are formed to be separated from each other.
    Type: Application
    Filed: November 23, 2021
    Publication date: September 15, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Katsutoshi SUGAWARA, Yasuhiro KAGAWA, Yutaka FUKUI
  • Patent number: 11355629
    Abstract: A silicon carbide semiconductor device includes a diffusion protective layer provided below a gate insulating film, a gate line provided on an insulation film on the bottom face of a terminal trench and electrically connected to a gate electrode, the terminal trench being located more toward the outer side than the gate trench, a gate pad joined to the gate line in the terminal trench, a terminal protective layer provided below the insulation film on the bottom face of the terminal trench, and a source electrode electrically connected to a source region, the diffusion protective layer, and the terminal protective layer. The diffusion protective layer has first extensions that extend toward the terminal protective layer and that are separated from the terminal protective layer. This configuration inhibits an excessive electric field from being applied to the gate insulating film provided on the bottom face of the gate trench.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: June 7, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Katsutoshi Sugawara, Yutaka Fukui, Kohei Adachi, Hideyuki Hatta
  • Publication number: 20220149167
    Abstract: The present invention relates to a semiconductor device having trench gates. The semiconductor device includes the following: a first semiconductor layer; a first semiconductor region selectively disposed in the upper layer of the first semiconductor layer; a second semiconductor region in contact with the first semiconductor region; a third semiconductor region on the bottom surfaces of the first and second semiconductor regions; gate trenches provided to penetrate the first and third semiconductor regions in the thickness direction of the first and third semiconductor regions to reach the inside of the first semiconductor layer; a field-reducing region on the bottom of each gate trench; and connection layers arranged in the first semiconductor layer at intervals so as to be each in contact with at least one of sidewalls of the gate trenches, the connection layers each electrically connecting the field-reducing region to the third semiconductor region.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yutaka FUKUI, Katsutoshi SUGAWARA, Hideyuki HATTA, Hidenori KOKETSU, Rina TANAKA, Yusuke MIYATA
  • Patent number: 11309416
    Abstract: A drift layer has a first conductivity type. A well region has a second conductivity type. A well contact region has a resistivity lower than that of the well region. A source contact region is provided on the well region, separated from the drift layer by the well region, and has the first conductivity type. A source resistance region is provided on the well region, separated from the drift layer by the well region, is adjacent to the source contact region, has the first conductivity type, and has a sheet resistance higher than that of the source contact region. A source electrode contacts the source contact region, the well contact region, and the source resistance region, and is continuous with the channel at least through the source resistance region.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 19, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hideyuki Hatta, Shiro Hino, Katsutoshi Sugawara
  • Publication number: 20220102503
    Abstract: The present invention relates to a silicon carbide semiconductor device that includes a Schottky barrier diode in a field-effect transistor and includes a first trench provided through first and second semiconductor regions in a thickness direction and reaches inside a semiconductor layer, a second trench provided through the second semiconductor region in the thickness direction and reaches inside the semiconductor layer, a gate electrode embedded in the first trench via a gate insulating film, a Schottky barrier diode electrode embedded in the second trench, a first low-resistance layer having contact with a trench side wall of the first trench, and a second low-resistance layer having contact with a trench side wall of the second trench. The second low-resistance layer has an impurity concentration that is higher than the impurity concentration in the semiconductor layer and lower than the impurity concentration in the first low-resistance layer.
    Type: Application
    Filed: March 18, 2019
    Publication date: March 31, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hideyuki HATTA, Rina TANAKA, Katsutoshi SUGAWARA, Yutaka FUKUI
  • Patent number: 11271084
    Abstract: The present invention relates to a semiconductor device having trench gates. The semiconductor device includes the following: a first semiconductor layer; a first semiconductor region selectively disposed in the upper layer of the first semiconductor layer; a second semiconductor region in contact with the first semiconductor region; a third semiconductor region on the bottom surfaces of the first and second semiconductor regions; gate trenches provided to penetrate the first and third semiconductor regions in the thickness direction of the first and third semiconductor regions to reach the inside of the first semiconductor layer; a field-reducing region on the bottom of each gate trench; and connection layers arranged in the first semiconductor layer at intervals so as to be each in contact with at least one of sidewalls of the gate trenches, the connection layers each electrically connecting the field-reducing region to the third semiconductor region.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: March 8, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yutaka Fukui, Katsutoshi Sugawara, Hideyuki Hatta, Hidenori Koketsu, Rina Tanaka, Yusuke Miyata
  • Patent number: 11251299
    Abstract: A drift layer made of silicon carbide has a first conductivity type. A body region on the drift layer has a second conductivity type. A source region on the body region has the first conductivity type. A gate insulating film is on each inner wall of at least one trench. A protective layer has at least a portion below the trench, is in contact with the drift layer, and has the second conductivity type. A first low-resistance layer is in contact with the trench and the protective layer, straddles a border between the trench and the protective layer in the depth direction, has the first conductivity type, and has a higher impurity concentration than the drift layer. A second low-resistance layer is in contact with the first low-resistance layer, is away from the trench, has the first conductivity type, and has a higher impurity concentration than the first low-resistance layer.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: February 15, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Rina Tanaka, Katsutoshi Sugawara, Yutaka Fukui, Hideyuki Hatta, Yusuke Miyata
  • Publication number: 20220037474
    Abstract: A drift layer is made of silicon carbide and has a first conductivity type. At least one trench has a first side surface facing a Schottky barrier diode region, and a second side surface extending in a transistor region and contacting a source region, a body region, and the drift layer. A first protective region is provided under the at least one trench, has a second conductivity type, and is higher in impurity concentration of the second conductivity type than the body region. A second protective region extends from the first protective region, reaches at least one of the first side surface and an end region of the second side surface continuous with the first side surface, has an uppermost portion shallower than a lowermost portion of the body region, and is higher in impurity concentration of the second conductivity type than the body region.
    Type: Application
    Filed: December 10, 2018
    Publication date: February 3, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Rina TANAKA, Katsutoshi SUGAWARA, Yutaka FUKUI, Hideyuki HATTA, Yusuke MIYATA