Patents by Inventor Katsuya Kojima

Katsuya Kojima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10501838
    Abstract: The present invention provides a cooling device for a hot-dip plating device provided on an upper side of a plating thickness control device in a conveyance route of a hot-dip plated steel sheet that is conveyed from a plating bath in a vertically upward direction. The cooling device includes: a main cooling device that vertically sprays a main cooling gas to the hot-dip plated steel sheet; and a preliminary cooling device that is provided in a preliminary cooling section between the main cooling device and the plating thickness control device in the conveyance route, and sprays a preliminary cooling gas to a plurality of gas collision positions which are set along the preliminary cooling section.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: December 10, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tooru Oohashi, Kazuki Machida, Hiroshi Nakata, Katsuya Kojima, Kohhei Hayakawa
  • Patent number: 10343867
    Abstract: A steel sheet shape control method includes, (A) setting a target correction shape of the steel sheet at a position of an electromagnet to a curved shape, (B) measuring a steel sheet shape when electromagnetic correction is performed, (C) calculating the steel sheet shape in a nozzle position based on the steel sheet shape, (D) repeating (B) and (C) by resetting the target correction shape to a curved shape having a smaller amount of warp, (E) when the amount of warp of the steel sheet shape at the position of the nozzle is less than the upper limit value, (F) calculating vibration of the steel sheet at the position of the nozzle, and (G) adjusting a control gain of the electromagnet until amplitude of vibration is less than a second upper limit value when the amplitude of the vibration is equal to or more than the second upper limit value.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: July 9, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yasushi Kurisu, Yoshihiro Yamada, Futoshi Nishimura, Katsuya Kojima, Junya Takahashi, Masaaki Omodaka, Masafumi Matsumoto, Hiroyuki Tanaka
  • Publication number: 20170275746
    Abstract: The present invention provides a cooling device for a hot-dip plating device provided on an upper side of a plating thickness control device in a conveyance route of a hot-dip plated steel sheet that is conveyed from a plating bath in a vertically upward direction. The cooling device includes: a main cooling device that vertically sprays a main cooling gas to the hot-dip plated steel sheet; and a preliminary cooling device that is provided in a preliminary cooling section between the main cooling device and the plating thickness control device in the conveyance route, and sprays a preliminary cooling gas to a plurality of gas collision positions which are set along the preliminary cooling section.
    Type: Application
    Filed: October 24, 2014
    Publication date: September 28, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru OOHASHI, Kazuki MACHIDA, Hiroshi NAKATA, Katsuya KOJIMA, Kohhei HAYAKAWA
  • Publication number: 20170088381
    Abstract: A steel sheet shape control method includes, (A) setting a target correction shape of the steel sheet at a position of an electromagnet to a curved shape, (B) measuring a steel sheet shape when electromagnetic correction is performed, (C) calculating the steel sheet shape in a nozzle position based on the steel sheet shape, (D) repeating (B) and (C) by resetting the target correction shape to a curved shape having a smaller amount of warp, (E) when the amount of warp of the steel sheet shape at the position of the nozzle is less than the upper limit value, (F) calculating vibration of the steel sheet at the position of the nozzle, and (G) adjusting a control gain of the electromagnet until amplitude of vibration is less than a second upper limit value when the amplitude of the vibration is equal to or more than the second upper limit value.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasushi KURISU, Yoshihiro YAMADA, Futoshi NISHIMURA, Katsuya KOJIMA, Junya TAKAHASHI, Masaaki OMODAKA, Masafumi MATSUMOTO, Hiroyuki TANAKA
  • Patent number: 9551056
    Abstract: A steel sheet shape control method includes, (A) setting a target correction shape of the steel sheet at a position of an electromagnet to a curved shape, (B) measuring a steel sheet shape when electromagnetic correction is performed, (C) calculating the steel sheet shape in a nozzle position based on the steel sheet shape, (D) repeating (B) and (C) by resetting the target correction shape to a curved shape having a smaller amount of warp, (E) when the amount of warp of the steel sheet shape at the position of the nozzle is less than the upper limit value, (F) calculating vibration of the steel sheet at the position of the nozzle, and (G) adjusting a control gain of the electromagnet until amplitude of vibration is less than a second upper limit value when the amplitude of the vibration is equal to or more than the second upper limit value.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: January 24, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasushi Kurisu, Yoshihiro Yamada, Futoshi Nishimura, Katsuya Kojima, Junya Takahashi, Masaaki Omodaka, Masafumi Matsumoto, Hiroyuki Tanaka
  • Publication number: 20140211361
    Abstract: A steel sheet shape control method includes, (A) setting a target correction shape of the steel sheet at a position of an electromagnet to a curved shape, (B) measuring a steel sheet shape when electromagnetic correction is performed, (C) calculating the steel sheet shape in a nozzle position based on the steel sheet shape, (D) repeating (B) and (C) by resetting the target correction shape to a curved shape having a smaller amount of warp, (E) when the amount of warp of the steel sheet shape at the position of the nozzle is less than the upper limit value, (F) calculating vibration of the steel sheet at the position of the nozzle, and (G) adjusting a control gain of the electromagnet until amplitude of vibration is less than a second upper limit value when the amplitude of the vibration is equal to or more than the second upper limit value.
    Type: Application
    Filed: May 2, 2013
    Publication date: July 31, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasushi Kurisu, Yoshihiro Yamada, Futoshi Nishimura, Katsuya Kojima, Junya Takahashi, Masaaki Omodaka, Masafumi Matsumoto, Hiroyuki Tanaka