Patents by Inventor Katsuyuki Sugita

Katsuyuki Sugita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250136139
    Abstract: An information processing device includes a reference section that refers to a table in which a list of sounds defined by identifiers determined according to priority levels and sound types is recorded, and an arbitration section that, with respect to emitting instructions from one or more applications that are configured to be capable of being added or updated from an exterior and that cause a sound to be emitted, arbitrates a sound that is to be caused to be emitted, based on the priority levels, and outputs an identifier corresponding to a sound resulting from the arbitration.
    Type: Application
    Filed: October 21, 2024
    Publication date: May 1, 2025
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kohji SONOHARA, Katsuyuki SUGITA
  • Publication number: 20250012654
    Abstract: A pressure sensor that can prevent application of excessive stress on a port and detect fluid differential pressure accurately. A base includes a sensor that detects a pressure difference between a first fluid and a second fluid. A first port is attached to the base and has a first flow path through which the first fluid is introduced. A second port is attached to the base and has a second flow path through which the second fluid is introduced. The outer diameter of the first port is equal to the outer diameter of the second port, and the diameter of the first flow path is smaller than the diameter of the second flow path.
    Type: Application
    Filed: September 23, 2024
    Publication date: January 9, 2025
    Applicants: FUJIKIN INCORPORATED, NIDEC COMPONENTS CORPORATION
    Inventors: Kaoru Hirata, Keisuke Ideguchi, Shinya Ogawa, Katsuyuki Sugita, Masaaki Nagase, Kouji Nishino, Masaki Fukasawa, Yusuke Ishikawa
  • Publication number: 20250012376
    Abstract: A flow rate control device includes a piezo valve having a metal diaphragm valve element that is opened and closed by a piezo actuator, a strain sensor for detecting a displacement amount of the piezo actuator, and a control circuit for receiving a detection signal of the strain sensor and controlling a drive voltage of the piezo actuator, wherein the control circuit is configured so as, by applying a positive drive voltage one or more times and then applying a negative drive voltage a plurality of times to the piezo actuator at a desired timing, to bring an amount of strain detected by the strain sensor close to zero when no drive voltage is applied to the piezo actuator.
    Type: Application
    Filed: June 26, 2024
    Publication date: January 9, 2025
    Applicant: FUJIKIN INCORPORATED
    Inventors: Toru HIRAI, Kaoru HIRATA, Katsuyuki SUGITA
  • Patent number: 12174647
    Abstract: The flow rate control device 10 includes a control valve 11, a restriction part 12 provided downstream of the control valve 11, an upstream pressure sensor 13 for measuring a pressure P1 between the control valve 11 and the restriction part 12, a differential pressure sensor 20 for measuring a differential pressure ?P between the upstream and the downstream of the restriction part 12, and an arithmetic control circuit 16 connected to the control valve 11, the upstream pressure sensor 13, and the differential pressure sensor 20.
    Type: Grant
    Filed: January 22, 2024
    Date of Patent: December 24, 2024
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Keisuke Ideguchi, Shinya Ogawa, Katsuyuki Sugita, Masaaki Nagase, Kouji Nishino, Nobukazu Ikeda, Hiroyuki Ito
  • Patent number: 12007797
    Abstract: A flow rate control device 100 includes a control valve 6 provided in a flow path 1, a flow rate measurement unit 2, 3 for measuring fluid flow rate controlled by the control valve 6, and a controller 7. The controller 7 is configured so as to control the opening/closing operation of the control valve 6 to match the measurement integral flow rate based on the signal outputted from the flow rate measurement unit (Vn+Vd) to the target integral flow rate Vs.
    Type: Grant
    Filed: July 3, 2023
    Date of Patent: June 11, 2024
    Assignee: FUJIKIN INCORPORATED
    Inventors: Katsuyuki Sugita, Kouji Nishino, Naofumi Yasumoto, Kaoru Hirata, Shinya Ogawa, Keisuke Ideguchi
  • Patent number: 11994482
    Abstract: The driving device includes a piezoelectric element, a power supply unit, a first resistor, a second resistor, a measuring unit and a control unit, wherein resistance values of the first resistor and the second resistor are smaller than an insulating resistance value of the piezoelectric element, the measuring unit measures, a voltage across the first resistor (voltage between a first terminal and a second terminal), in a state of supplying a predetermined voltage from the power supply unit, and the control unit calculates a resistance value of the piezoelectric element from a voltage value obtained by the measurement of the measuring unit, and determines, whether or not degradation has occurred in the piezoelectric element based on the calculated resistance value.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: May 28, 2024
    Assignee: FUJIKIN INCORPORATED
    Inventors: Atsushi Hidaka, Katsuyuki Sugita, Takatoshi Nakatani, Kouji Nishino, Nobukazu Ikeda
  • Publication number: 20240160230
    Abstract: The flow rate control device 10 includes a control valve 11, a restriction part 12 provided downstream of the control valve 11, an upstream pressure sensor 13 for measuring a pressure P1 between the control valve 11 and the restriction part 12, a differential pressure sensor 20 for measuring a differential pressure ?P between the upstream and the downstream of the restriction part 12, and an arithmetic control circuit 16 connected to the control valve 11, the upstream pressure sensor 13, and the differential pressure sensor 20.
    Type: Application
    Filed: January 22, 2024
    Publication date: May 16, 2024
    Applicant: FUJIKIN INCORPORATED
    Inventors: Kaoru HIRATA, Keisuke IDEGUCHI, Shinya OGAWA, Katsuyuki SUGITA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA, Hiroyuki ITO
  • Patent number: 11914407
    Abstract: The flow rate control device 10 includes a control valve 11, a restriction part 12 provided downstream of the control valve 11, an upstream pressure sensor 13 for measuring a pressure P1 between the control valve 11 and the restriction part 12, a differential pressure sensor 20 for measuring a differential pressure ?P between the upstream and the downstream of the restriction part 12, and an arithmetic control circuit 16 connected to the control valve 11, the upstream pressure sensor 13, and the differential pressure sensor 20.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: February 27, 2024
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Keisuke Ideguchi, Shinya Ogawa, Katsuyuki Sugita, Masaaki Nagase, Kouji Nishino, Nobukazu Ikeda, Hiroyuki Ito
  • Publication number: 20230359228
    Abstract: A flow rate control device 100 includes a control valve 6 provided in a flow path 1, a flow rate measurement unit 2, 3 for measuring fluid flow rate controlled by the control valve 6, and a controller 7. The controller 7 is configured so as to control the opening/closing operation of the control valve 6 to match the measurement integral flow rate based on the signal outputted from the flow rate measurement unit (Vn+Vd) to the target integral flow rate Vs.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 9, 2023
    Applicant: FUJIKIN INCORPORATED
    Inventors: Katsuyuki SUGITA, Kouji NISHINO, Naofumi YASUMOTO, Kaoru HIRATA, Shinya OGAWA, Keisuke IDEGUCHI
  • Patent number: 11733721
    Abstract: A flow rate control device 100 includes a control valve 6 provided in a flow path 1, a flow rate measurement unit 2, 3 for measuring fluid flow rate controlled by the control valve 6, and a controller 7. The controller 7 is configured so as to control the opening/closing operation of the control valve 6 to match the measurement integral flow rate based on the signal outputted from the flow rate measurement unit (Vn+Vd) to the target integral flow rate Vs.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: August 22, 2023
    Assignee: FUJIKIN INCORPORATED
    Inventors: Katsuyuki Sugita, Kouji Nishino, Naofumi Yasumoto, Kaoru Hirata, Shinya Ogawa, Keisuke Ideguchi
  • Publication number: 20230152263
    Abstract: To provide a driving device including a piezoelectric element deterioration detection circuit and a deterioration detection method that enable detection of deterioration of the piezoelectric element used in the driving device, without stopping a normal operation of the driving device.
    Type: Application
    Filed: April 20, 2020
    Publication date: May 18, 2023
    Applicant: FUJIKIN INCORPORATED
    Inventors: Atsushi HIDAKA, Katsuyuki SUGITA, Takatoshi NAKATANI, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20230129479
    Abstract: A flow rate control device (8) includes a control valve (6) having a valve element and a piezoelectric element for moving the valve element, and an arithmetic processing circuit (7) for controlling an operation of the control valve, wherein the arithmetic processing circuit is configured to receive an external command signal SE corresponding to a target flow rate when opening the control valve from a closed state so that a gas flows at the target flow rate, and to generate an internal command signal E1 output to a driving circuit for determining a voltage applied to the piezoelectric element based on the external command signal, the internal command signal is a signal that rises with time from zero and converges to a value of the external command signal, and is generated such that a slope at the time of initial rise and a slope immediately before convergence are smaller than a slope therebetween.
    Type: Application
    Filed: January 19, 2021
    Publication date: April 27, 2023
    Applicant: FUJIKIN INCORPORATED
    Inventors: Katsuyuki SUGITA, Kouji NISHINO, Kaoru HIRATA, Shinya OGAWA, Keisuke IDEGUCHI
  • Publication number: 20230021102
    Abstract: A flow rate control device 100 includes a flow rate control valve 8 having a valve element 8a and a piezoelectric element 8b for moving the valve element, and a control circuit 9 for controlling an operation of the flow rate control valve 8, wherein, in order to perform a pulsed fluid supply, the control circuit 9 is configured so as to open-loop control an applied voltage to the piezoelectric element so that it approaches the target voltage after once applying a voltage V1 exceeding a target voltage V0 corresponding to a target displacement of the piezoelectric element, when a pulsed flow rate setting signal is given.
    Type: Application
    Filed: December 3, 2020
    Publication date: January 19, 2023
    Applicant: FUJIKIN INCORPORATED
    Inventors: Katsuyuki SUGITA, Ryousuke DOHI, Koji KAWADA, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20230011244
    Abstract: A pressure control device 20 includes a pressure control valve 25, a flow resistance 23 provided downstream of the pressure control valve, for restricting a gas flow, a first pressure sensor 21 for measuring a gas pressure between the pressure control valve and the flow resistance, a second pressure sensor 22 for measuring a gas pressure downstream of the flow resistance, and an arithmetic control circuit 26 connected to the first pressure sensor and the second pressure sensor. The pressure control device is configured to control the gas pressure downstream of the flow resistance by adjusting an opening degree of the pressure control valve based on an output of the second pressure sensor regardless of an output of the first pressure sensor control, and calculate the flow rate of the gas downstream of the flow resistance based on the output of the first pressure sensor and the output of the second pressure sensor.
    Type: Application
    Filed: December 3, 2020
    Publication date: January 12, 2023
    Applicant: FUJIKIN INCORPORATED
    Inventors: Kaoru HIRATA, Kouji NISHINO, Katsuyuki SUGITA, Shinya OGAWA, Keisuke IDEGUCHI
  • Patent number: 11416011
    Abstract: A pressure-type flow rate control device includes a restriction part; a control valve provided upstream of the restriction part; an upstream pressure sensor for detecting pressure between the restriction part and the control valve; and an arithmetic processing circuit connected to the control valve and the upstream pressor sensor. The device is configured to perform flow rate control by controlling the control valve according to an output of the upstream pressure sensor. The arithmetic processing circuit performs an operation of closing the control valve in order to reduce a flow rate of a fluid flowing through the restriction part, and performs an operation of closing the control valve by feedback control in which a target value is an exponential function more gradual than the pressure drop characteristic data when a gas flows out of the restriction part.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 16, 2022
    Assignee: FUJIKIN INCORPORATED
    Inventors: Katsuyuki Sugita, Kaoru Hirata, Nobukazu Ikeda, Kouji Nishino, Masahiko Takimoto, Takahiro Imai, Shinya Ogawa
  • Patent number: 11402250
    Abstract: The liquid level meter according to the present invention includes a resistive temperature detector, a temperature measuring body located above it, a temperature detecting unit detecting temperatures of the resistive temperature detector and the temperature measuring body, a current controlling unit determining a current value to be flowed through the resistive temperature detector so that the resistive temperature detector and the temperature measuring body become a predetermined temperature difference, a power supply unit supplying the current of the determined current value to the resistive temperature detector, and a liquid level detecting unit detecting a position of a liquid level.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: August 2, 2022
    Assignee: FUJIKIN INCORPORATED
    Inventors: Atsushi Hidaka, Takatoshi Nakatani, Satoru Yamashita, Katsuyuki Sugita, Kaoru Hirata, Masaaki Nagase, Kouji Nishino, Nobukazu Ikeda
  • Patent number: 11391608
    Abstract: A self-diagnosis method of a flow rate control device includes: a step (a) for measuring a pressure drop characteristic after a pressure control valve (6) has been changed to a closed state from a state where a fluid flows from the upstream side of the pressure control valve with the opening of a flow rate control valve (8) is larger than a restriction part; a step (b) for measuring the pressure drop characteristic after the pressure control valve has been changed to the closed state from a state where the fluid flows from the upstream side of the flow rate control valve to the downstream side with the opening of the flow rate control valve is smaller than the restriction part; a step (c) for determining whether there is an abnormality by comparing the pressure drop characteristic measured in step (a) with a corresponding reference pressure drop characteristic; a step (d) for determining whether there is an abnormality by comparing the pressure drop characteristic measured in step (b) with a corresponding ref
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 19, 2022
    Assignee: FUJIKIN INCORPORATED
    Inventors: Katsuyuki Sugita, Ryousuke Dohi, Kaoru Hirata, Koji Kawada, Nobukazu Ikeda, Kouji Nishino
  • Publication number: 20220197316
    Abstract: The flow rate control device 10 includes a control valve 11, a restriction part 12 provided downstream of the control valve 11, an upstream pressure sensor 13 for measuring a pressure P1 between the control valve 11 and the restriction part 12, a differential pressure sensor 20 for measuring a differential pressure ?P between the upstream and the downstream of the restriction part 12, and an arithmetic control circuit 16 connected to the control valve 11, the upstream pressure sensor 13, and the differential pressure sensor 20.
    Type: Application
    Filed: April 16, 2020
    Publication date: June 23, 2022
    Applicant: FUJIKIN INCORPORATED
    Inventors: Kaoru HIRATA, Keisuke IDEGUCHI, Shinya OGAWA, Katsuyuki SUGITA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA, Hiroyuki ITO
  • Patent number: 11346457
    Abstract: A piezoelectric element-driven valve 1 including a main body, a valve element, piezoelectric actuators, a plurality of cylindrical actuator boxes arranged in series, a cylindrical outer connecting jig detachably connecting the adjacent actuator boxes and having an opening for drawing out wiring, a plurality of piezoelectric actuators accommodated in the actuator box respectively in the same direction, and a cylindrical inner connecting jig slidably accommodated in the outer connecting jig and having an opening for positioning the adjacent piezoelectric actuators and drawing out wiring.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: May 31, 2022
    Assignee: FUJIKIN INCORPORATED
    Inventors: Ryousuke Dohi, Kaoru Hirata, Katsuyuki Sugita, Koji Kawada, Kouji Nishino, Nobukazu Ikeda
  • Patent number: 11269362
    Abstract: A flow rate control method performed using a flow rate control device 100 comprising a first control valve 6 provided in a flow path, a second control valve 8 provided downstream of the first control valve, and a pressure sensor 3 for measuring fluid pressure downstream of the first control valve, the method comprising steps of: (a) closing the opening of the first control valve from a state in which, while controlling the opening of the first control valve based on an output of the pressure sensor so as to be the first flow rate, maintaining the opening of the second control valve in an open state, and flowing a fluid at the first flow rate; and (b) based on the output of the pressure sensor, the pressure remaining downstream of the first control valve is controlled by adjusting the opening of the second control valve, and flowing the fluid at the second flow rate downstream of the second control valve.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 8, 2022
    Assignee: FUJIKIN INCORPORATED
    Inventors: Kaoru Hirata, Shinya Ogawa, Katsuyuki Sugita, Kouji Nishino, Nobukazu Ikeda