Patents by Inventor Kaustav Bera

Kaustav Bera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230326582
    Abstract: The present disclosure, in some embodiments, relates to a method. The method includes using a first machine learning model to generate a first medical prediction associated with a lesion in a medical scan using one or more intra-lesional radiomic features associated with the lesion and the one or more peri-lesional radiomic features associated with a peri-lesional region around the lesion. A second machine learning model is used to generate a second medical prediction associated with the lesion using one or more pathomic features associated with the lesion. A combined medical prediction associated with the lesion is generated using the first medical prediction and the second medical prediction as inputs to a third model.
    Type: Application
    Filed: May 25, 2023
    Publication date: October 12, 2023
    Inventors: Pranjal Vaidya, Anant Madabhushi, Kaustav Bera
  • Patent number: 11676703
    Abstract: Embodiments discussed herein facilitate building and/or employing model(s) for determining tumor prognoses based on a combination of radiomic features and pathomic features. One example embodiment can perform actions comprising: providing, to a first machine learning model, at least one of: one or more intra-tumoral radiomic features associated with a tumor or one or more peri-tumoral radiomic features associated with a peri-tumoral region around the tumor; receiving a first predicted prognosis associated with the tumor from the first machine learning model; providing, to a second machine learning model, one or more pathomic features associated with the tumor; receiving a second predicted prognosis associated with the tumor from the second machine learning model; and generating a combined prognosis associated with the tumor based on the first predicted prognosis and the second predicted prognosis.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: June 13, 2023
    Assignee: Case Western Reserve University
    Inventors: Pranjal Vaidya, Anant Madabhushi, Kaustav Bera
  • Patent number: 11610304
    Abstract: Embodiments discussed herein facilitate building and/or employing a clinical-radiomics score for determining tumor prognoses based on a combination of a radiomics risk score generated by a machine learning model and clinico-pathological factors. One example embodiment can perform actions comprising: accessing a medical imaging scan of a tumor; segmenting a peri-tumoral region around the tumor; extracting one or more intra-tumoral radiomic features from the tumor and one or more peri-tumoral radiomic features from the peri-tumoral region; providing the one or more intra-tumoral radiomic features and the one or more peri-tumoral radiomic features to a trained machine learning model; receiving a radiomic risk score (RRS) associated with the tumor from the machine learning model; determining a clinical-radiomics score based on the RRS and one or more clinico-pathological factors; and generating a prognosis for the tumor based on the clinical-radiomics score.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: March 21, 2023
    Assignee: Case Western Reserve University
    Inventors: Pranjal Vaidya, Anant Madabhushi, Kaustav Bera
  • Patent number: 11574404
    Abstract: Embodiments include controlling a processor to perform operations, the operations comprising accessing a digitized image of a region of tissue (ROT) demonstrating cancerous pathology; extracting a set of radiomic features from the digitized image, where the set of radiomic features are positively correlated with programmed death-ligand 1 (PD-L1) expression; providing the set of radiomic features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will experience cancer recurrence, where the machine learning classifier computes the probability based, at least in part, on the set of radiomic features; generating a classification of the region of tissue as likely to experience recurrence or non-recurrence based, at least in part, on the probability; and displaying the classification and at least one of the probability, the set of radiomic features, or the digitized image.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: February 7, 2023
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Pranjal Vaidya, Kaustav Bera, Prateek Prasanna, Vamsidhar Velcheti
  • Patent number: 11494900
    Abstract: Embodiments facilitate generating a biochemical recurrence (BCR) prognosis by accessing a digitized image of a region of tissue demonstrating prostate cancer (CaP) pathology associated with a patient; generating a set of segmented gland lumen by segmenting a plurality of gland lumen represented in the region of tissue using a deep learning segmentation model; generating a set of post-processed segmented gland lumen; extracting a set of quantitative histomorphometry (QH) features from the digitized image based, at least in part, on the set of post-processed segmented gland lumen; generating a feature vector based on the set of QH features; computing a histotyping risk score based on a weighted sum of the feature vector; generating a classification of the patient as BCR high-risk or BCR low-risk based on the histotyping risk score and a risk score threshold; generating a BCR prognosis based on the classification; and displaying the BCR prognosis.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: November 8, 2022
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Patrick Leo, Andrew Janowczyk, Kaustav Bera
  • Patent number: 11464473
    Abstract: Embodiments include controlling a processor to access a radiological image of a region of lung tissue, where the radiological image includes a ground glass (GGO) nodule; define a tumoral region by segmenting the GGO nodule, where defining the tumoral region includes defining a tumoral boundary; define a peri-tumoral region based on the tumoral boundary; extract a set of radiomic features from the peri-tumoral region and the tumoral region; provide the set of radiomic features to a machine learning classifier trained to distinguish minimally invasive adenocarcinoma (MIA) and adenocarcinoma in situ (AIS) from invasive adenocarcinoma; receive, from the machine learning classifier, a probability that the GGO nodule is invasive adenocarcinoma, where the machine learning classifier computes the probability based on the set of radiomic features; generate a classification of the GGO nodule as MIA or AIS, or invasive adenocarcinoma, based, at least in part, on the probability; and display the classification.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: October 11, 2022
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Pranjal Vaidya, Kaustav Bera
  • Patent number: 11350901
    Abstract: Embodiments generate an early stage NSCLC recurrence prognosis, and predict added benefit of adjuvant chemotherapy. Embodiments include processors configured to access a radiological image of a region of tissue demonstrating early stage NSCLC; segment a tumor represented in the radiological image; define a peritumoral region based on a morphological dilation of a boundary of the tumor; extract a radiomic signature that includes a set of tumoral radiomic features extracted from the tumoral region, and a set of peritumoral radiomic features extracted from the peritumoral region, based on a continuous time to event data; compute a radiomic score based on the radiomic signature; compute a probability of added benefit of adjuvant chemotherapy based on the radiomic score; and generate an NSCLC recurrence prognosis based on the radiomic score. Embodiments may display the radiomic score, or generate a personalized treatment plan based on the radiomic score.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: June 7, 2022
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Pranjal Vaidya, Vamsidhar Velcheti, Kaustav Bera
  • Publication number: 20210110928
    Abstract: Embodiments discussed herein facilitate training and/or employing a machine learning model trained on radiomic features, quantitative histomorphometric features, and molecular expression to generate prognoses for treatment of tumors. One example embodiment can access a medical imaging scan of a tumor; segment a peri-tumoral region around the tumor; extract one or more radiomic features from the one or more of the tumor or the peri-tumoral region; provide the one or more radiomic features to a machine learning model trained based on the one or more radiomic features of a training set, one or more quantitative histomorphometric (QH) features of the training set, and a molecular expression of the training set; and receive a prognosis associated with the tumor from the machine learning model.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 15, 2021
    Inventors: Pranjal Vaidya, Kaustav Bera, Anant Madabhushi
  • Publication number: 20210110541
    Abstract: Embodiments discussed herein facilitate building and/or employing model(s) for determining tumor prognoses based on a combination of radiomic features and pathomic features. One example embodiment can perform actions comprising: providing, to a first machine learning model, at least one of: one or more intra-tumoral radiomic features associated with a tumor or one or more peri-tumoral radiomic features associated with a peri-tumoral region around the tumor; receiving a first predicted prognosis associated with the tumor from the first machine learning model; providing, to a second machine learning model, one or more pathomic features associated with the tumor; receiving a second predicted prognosis associated with the tumor from the second machine learning model; and generating a combined prognosis associated with the tumor based on the first predicted prognosis and the second predicted prognosis.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Pranjal Vaidya, Anant Madabhushi, Kaustav Bera
  • Publication number: 20210110540
    Abstract: Embodiments discussed herein facilitate building and/or employing a clinical-radiomics score for determining tumor prognoses based on a combination of a radiomics risk score generated by a machine learning model and clinico-pathological factors. One example embodiment can perform actions comprising: accessing a medical imaging scan of a tumor; segmenting a peri-tumoral region around the tumor; extracting one or more intra-tumoral radiomic features from the tumor and one or more peri-tumoral radiomic features from the peri-tumoral region; providing the one or more intra-tumoral radiomic features and the one or more peri-tumoral radiomic features to a trained machine learning model; receiving a radiomic risk score (RRS) associated with the tumor from the machine learning model; determining a clinical-radiomics score based on the RRS and one or more clinico-pathological factors; and generating a prognosis for the tumor based on the clinical-radiomics score.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Pranjal Vaidya, Anant Madabhushi, Kaustav Bera
  • Publication number: 20210027459
    Abstract: Embodiments facilitate generating a biochemical recurrence (BCR) prognosis by accessing a digitized image of a region of tissue demonstrating prostate cancer (CaP) pathology associated with a patient; generating a set of segmented gland lumen by segmenting a plurality of gland lumen represented in the region of tissue using a deep learning segmentation model; generating a set of post-processed segmented gland lumen; extracting a set of quantitative histomorphometry (QH) features from the digitized image based, at least in part, on the set of post-processed segmented gland lumen; generating a feature vector based on the set of QH features; computing a histotyping risk score based on a weighted sum of the feature vector; generating a classification of the patient as BCR high-risk or BCR low-risk based on the histotyping risk score and a risk score threshold; generating a BCR prognosis based on the classification; and displaying the BCR prognosis.
    Type: Application
    Filed: December 30, 2019
    Publication date: January 28, 2021
    Inventors: Anant Madabhushi, Patrick Leo, Andrew Janowczyk, Kaustav Bera
  • Patent number: 10839513
    Abstract: Embodiments access a pre-immunotherapy image of tissue demonstrating NSCLC including a tumor and a peritumoral region; extract a first set of radiomic features from the image; provide the first set of radiomic features to a first machine learning classifier; receive a first probability from the first classifier that the tissue is hyperprogressor (HP) or non-responder (R); if the first probability that the tissue is within a threshold: generate a first classification of the ROT as HP or non-R based on the first probability; if the first probability is not within the threshold: extract a second set of radiomic features from the peritumoral region and provide the second set to a second machine learning classifier; receive a second probability from the second classifier that the tissue is HP or R; generate a second classification of the tissue as HP or R based on the second probability; and display the classification.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 17, 2020
    Assignee: Case Western Reserve University
    Inventors: Pranjal Vaidya, Kaustav Bera, Vamsidhar Velcheti, Anant Madabhushi
  • Publication number: 20190357870
    Abstract: Embodiments include controlling a processor to access a radiological image of a region of lung tissue, where the radiological image includes a ground glass (GGO) nodule; define a tumoral region by segmenting the GGO nodule, where defining the tumoral region includes defining a tumoral boundary; define a peri-tumoral region based on the tumoral boundary; extract a set of radiomic features from the peri-tumoral region and the tumoral region; provide the set of radiomic features to a machine learning classifier trained to distinguish minimally invasive adenocarcinoma (MIA) and adenocarcinoma in situ (AIS) from invasive adenocarcinoma; receive, from the machine learning classifier, a probability that the GGO nodule is invasive adenocarcinoma, where the machine learning classifier computes the probability based on the set of radiomic features; generate a classification of the GGO nodule as MIA or AIS, or invasive adenocarcinoma, based, at least in part, on the probability; and display the classification.
    Type: Application
    Filed: March 22, 2019
    Publication date: November 28, 2019
    Inventors: Anant Madabhushi, Pranjal Vaidya, Kaustav Bera
  • Publication number: 20190347789
    Abstract: Embodiments access a pre-immunotherapy image of tissue demonstrating NSCLC including a tumor and a peritumoral region; extract a first set of radiomic features from the image; provide the first set of radiomic features to a first machine learning classifier; receive a first probability from the first classifier that the tissue is hyperprogressor (HP) or non-responder (R); if the first probability that the tissue is within a threshold: generate a first classification of the ROT as HP or non-R based on the first probability; if the first probability is not within the threshold: extract a second set of radiomic features from the peritumoral region and provide the second set to a second machine learning classifier; receive a second probability from the second classifier that the tissue is HP or R; generate a second classification of the tissue as HP or R based on the second probability; and display the classification.
    Type: Application
    Filed: March 11, 2019
    Publication date: November 14, 2019
    Inventors: Pranjal Vaidya, Kaustav Bera, Vamsidhar Velcheti, Anant Madabhushi
  • Publication number: 20190259156
    Abstract: Embodiments include controlling a processor to perform operations, the operations comprising accessing a digitized image of a region of tissue (ROT) demonstrating cancerous pathology; extracting a set of radiomic features from the digitized image, where the set of radiomic features are positively correlated with programmed death-ligand 1 (PD-L1) expression; providing the set of radiomic features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will experience cancer recurrence, where the machine learning classifier computes the probability based, at least in part, on the set of radiomic features; generating a classification of the region of tissue as likely to experience recurrence or non-recurrence based, at least in part, on the probability; and displaying the classification and at least one of the probability, the set of radiomic features, or the digitized image.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 22, 2019
    Inventors: Anant Madabhushi, Pranjal Vaidya, Kaustav Bera, Prateek Prasanna, Vamsidhar Velcheti
  • Publication number: 20190159745
    Abstract: Embodiments generate an early stage NSCLC recurrence prognosis, and predict added benefit of adjuvant chemotherapy. Embodiments include processors configured to access a radiological image of a region of tissue demonstrating early stage NSCLC; segment a tumor represented in the radiological image; define a peritumoral region based on a morphological dilation of a boundary of the tumor; extract a radiomic signature that includes a set of tumoral radiomic features extracted from the tumoral region, and a set of peritumoral radiomic features extracted from the peritumoral region, based on a continuous time to event data; compute a radiomic score based on the radiomic signature; compute a probability of added benefit of adjuvant chemotherapy based on the radiomic score; and generate an NSCLC recurrence prognosis based on the radiomic score. Embodiments may display the radiomic score, or generate a personalized treatment plan based on the radiomic score.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Anant Madabhushi, Pranjal Vaidya, Vamsidhar Velcheti, Kaustav Bera