Patents by Inventor Kay KLAUSING

Kay KLAUSING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102067
    Abstract: This disclosure relates to novel mjresynthesis kits and methods, in particular for use in pairwise sequencing.
    Type: Application
    Filed: September 25, 2023
    Publication date: March 28, 2024
    Applicant: Illumina, Inc.
    Inventors: Kay Klausing, Jonathan Boutell, Trina Osothprarop, Oliver Miller, Justin Robbins
  • Patent number: 11827932
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: November 28, 2023
    Assignee: Illumina, Inc.
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing
  • Publication number: 20230357731
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Application
    Filed: March 13, 2023
    Publication date: November 9, 2023
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED, ILLUMINA SINGAPORE PTE. LTD.
    Inventors: Kay Klausing, Hamed Tabatabaei Ghomi, Misha Golynskiy, Saurabh Nirantar, Seth McDonald, Sergio Peisajovich
  • Publication number: 20230272457
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Application
    Filed: March 6, 2023
    Publication date: August 31, 2023
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Publication number: 20230212667
    Abstract: Polynucleotide sequencing methods for sequencing one or more polynucleotide templates use primers bound to a surface as sequencing primers. The surface primers may include at least a portion of a surface oligonucleotide used during cluster formation. The sequencing methods may be used for single stranded sequencing or double stranded sequencing. Double stranded sequencing methods may employ an enzyme that has nick-translation activity. A kit includes all the reagents needed for sequencing does not include sequencing primers. The kit may be used to accomplish the sequencing methods of the present disclosure.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 6, 2023
    Applicants: ILLUMINA CAMBRIDGE LIMITED, ILLUMINA, INC.
    Inventors: Jonathan Mark Boutell, Eli M. Carrami, Pietro Gatti Lafranconi, Philip Balding, Oliver Jon Miller, Kay Klausing, Justin Robbins, Xiaolin Wu
  • Patent number: 11634697
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: April 25, 2023
    Assignees: Illumina, Inc., Illumina Cambridge Limited, Illumina Singapore Pte. Ltd.
    Inventors: Kay Klausing, Hamed Tabatabaei Ghomi, Misha Golynskiy, Saurabh Nirantar, Seth McDonald, Sergio Peisajovich
  • Patent number: 11629373
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 18, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Publication number: 20230047225
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain low pre-phasing rates when using ambiently stored polymerases, as well as methods and kits using the same.
    Type: Application
    Filed: June 1, 2022
    Publication date: February 16, 2023
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED, ILLUMINA SINGAPORE PTE. LTD.
    Inventors: Misha Golynskiy, Mariko Matsuura, Saurabh Nirantar, Hamed Tabatabaei Ghomi, Seth McDonald, Ryan Craig, Sergio Peisajovich, Kyrie Johnson, Kay Klausing, Eric Murtfeldt, Alexandra Exner
  • Publication number: 20220371005
    Abstract: A system includes a fluidic device, a flow control valve, a first reagent fluid reservoir fluidly connectable to the fluidic device by the flow control valve, a first fluid buffer reservoir fluidly connectable to the fluidic device by the flow control valve, and a common fluid buffer source fluidly connectable to the fluidic device by the flow control valve. The flow control valve permits flow comprising: (i) flow from the first reagent fluid reservoir to the fluidic device, (ii) flow from the common fluid buffer source to the fluidic device, (iii) flow from the fluidic device to the first fluid buffer reservoir, (iv) flow from the first reagent fluid reservoir to the fluidic device, and (v) flow from the first fluid buffer reservoir to the fluidic device.
    Type: Application
    Filed: August 3, 2022
    Publication date: November 24, 2022
    Applicant: Illumina, Inc.
    Inventors: Wesley A. COX-MURANAMI, Kay KLAUSING, Bradley Kent DREWS, Nicholas WATSON, Jennifer Olivia FOLEY, Murphy HITCHCOCK, Paul SANGIORGIO, Sz-Chin Steven LIN
  • Patent number: 11426723
    Abstract: A system includes a fluidic device, a flow control valve, a first reagent fluid reservoir fluidly connectable to the fluidic device by the flow control valve, a first fluid buffer reservoir fluidly connectable to the fluidic device by the flow control valve, and a common fluid buffer source fluidly connectable to the fluidic device by the flow control valve. The flow control valve permits flow comprising: (i) flow from the first reagent fluid reservoir to the fluidic device, (ii) flow from the common fluid buffer source to the fluidic device, (iii) flow from the fluidic device to the first fluid buffer reservoir, (iv) flow from the first reagent fluid reservoir to the fluidic device, and (v) flow from the first fluid buffer reservoir to the fluidic device.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: August 30, 2022
    Assignee: Illumina, Inc.
    Inventors: Wesley A. Cox-Muranami, Kay Klausing, Bradley Kent Drews, Nicholas Watson, Jennifer Olivia Foley, Murphy Hitchcock, Paul Sangiorgio, Sz-Chin Steven Lin
  • Publication number: 20210348141
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Application
    Filed: April 9, 2021
    Publication date: November 11, 2021
    Applicants: Illumina, Inc., Illumina Cambridge Limited, Illumina Singapore Pte. Ltd.
    Inventors: Kay Klausing, Hamed Tabatabaei Ghomi, Misha Golynskiy, Saurabh Nirantar, Seth McDonald, Sergio Peisajovich
  • Publication number: 20210139978
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing
  • Patent number: 11001816
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: May 11, 2021
    Assignees: Illumina, Inc., Illumina Singapore PTE. LTD., Illumina Cambridge Limited
    Inventors: Kay Klausing, Hamed Tabatabaei Ghomi, Misha Golynskiy, Saurabh Nirantar, Seth McDonald, Sergio Peisajovich
  • Patent number: 10900077
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: January 26, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing
  • Publication number: 20200318167
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 8, 2020
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Publication number: 20200181587
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Applicants: Illumina, Inc., Illumina Cambridge Limited, Illumina Singapore Pte. Ltd.
    Inventors: Kay Klausing, Hamed Tabatabael Ghomi, Misha Golynskiy, Saurabh Nirantar, Seth McDonald, Sergio Peisajovich
  • Patent number: 10633694
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 28, 2020
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Publication number: 20200108382
    Abstract: A system includes a fluidic device, a flow control valve, a first reagent fluid reservoir fluidly connectable to the fluidic device by the flow control valve, a first fluid buffer reservoir fluidly connectable to the fluidic device by the flow control valve, and a common fluid buffer source fluidly connectable to the fluidic device by the flow control valve. The flow control valve permits flow comprising: (i) flow from the first reagent fluid reservoir to the fluidic device, (ii) flow from the common fluid buffer source to the fluidic device, (iii) flow from the fluidic device to the first fluid buffer reservoir, (iv) flow from the first reagent fluid reservoir to the fluidic device, and (v) flow from the first fluid buffer reservoir to the fluidic device.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 9, 2020
    Applicant: Illumina, Inc.
    Inventors: Wesley A. Cox-Muranami, Kay Klausing, Bradley Kent Drews, Nicholas Watson, Jennifer Olivia Foley, Murphy Hitchcock, Paul Sangiorgio, Sz-Chin Steven Lin
  • Publication number: 20190264279
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 29, 2019
    Applicant: Illumina, Inc.
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing
  • Patent number: 10287629
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: May 14, 2019
    Assignee: Illumina, Inc.
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing