Patents by Inventor Kayla C. Niccum

Kayla C. Niccum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937381
    Abstract: A method for manufacturing an electronic device includes providing a substrate with a first major surface having a microchannel, wherein the microchannel has a first end and a second end; dispensing a conductive liquid in the microchannel to cause the conductive liquid to move, primarily by capillary pressure, in a first direction toward the first end of the microchannel and in a second direction toward the second end of the microchannel; and solidifying the conductive liquid to form an electrically conductive trace electrically connecting a first electronic device at the first end of the microchannel to a second electronic device at the second end of the microchannel.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: March 19, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Mikhail L Pekurovsky, Saagar A. Shah, Kayla C. Niccum, Kara A. Meyers, Christopher G. Walker
  • Publication number: 20240050951
    Abstract: An article includes a flexible structured film with a first major surface and a second major surface, wherein a first major surface of the flexible structured film has a plurality of posts separated by land areas, and the posts have an exposed surface. An anti-biofouling layer resides in the land areas, and the anti-biofouling layer has a methylated surface. An inorganic layer is on the exposed surfaces of the posts, wherein the inorganic layer includes a metal or a metal oxide. An analyte binding layer is on the inorganic layer, wherein the analyte binding layer is chosen from a reactive silane, a functionalizable hydrogel, a functionalizable polymer, and mixtures and combinations thereof. An exposed surface of the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte.
    Type: Application
    Filed: November 24, 2021
    Publication date: February 15, 2024
    Inventors: Henrik B. van Lengerich, Caleb T. Nelson, Kayla C. Niccum, Jeffrey L. Solomon, Paul B. Armstrong, Joshua M. Fishman, Tonya D. Bonilla, Phillip D. Hustad, David J. Tarnowski
  • Publication number: 20240011975
    Abstract: An article includes a flexible carrier film with a first major surface having an array of structures, at least a portion of which include an inorganic layer and an analyte binding layer. The analyte binding is bonded to the inorganic layer via a network of hydrocarbon linking groups, and the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte. Recessed features interspersed with the structures are free of the inorganic layer and the analyte binding layer.
    Type: Application
    Filed: September 8, 2021
    Publication date: January 11, 2024
    Inventors: Joshua M. Fishman, Paul B. Armstrong, Caleb T. Nelson, Kayla C. Niccum, Henrik B. van Lengerich, Tonya D. Bonilla, Karl K. Stensvad
  • Publication number: 20230354527
    Abstract: Devices including electrical connections to embedded electronic components and methods of making the same are provided. The devices include a flexible electronic component buried inside a substrate. The free end of the flexible electronic component can be extracted to stick out of the major plane of the substrate as a projecting contact.
    Type: Application
    Filed: January 22, 2021
    Publication date: November 2, 2023
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Saagar A. Shah, Kayla C. Niccum
  • Patent number: 11699865
    Abstract: Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 11, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kayla C. Niccum, Ankit Mahajan, Mikhail L. Pekurovsky, Nicholas T. Gabriel, Roger W. Barton, Kara A. Meyers, Saagar A. Shah, Jonathan W. Kemling, Richard C. Webb
  • Publication number: 20230193074
    Abstract: A compound is described having following formula: (I) Also described is a mixture of compounds comprising the reaction product of i) a urethane compound comprising a perfluorooxyalkyl moiety and at least two (meth)acryl groups; and ii) a silane compound comprising hydrolysable groups and a group selected from amine or mercapto group; wherein i) and ii) are reacted at an equivalent ratio of excess compound i) such that (meth)acryl groups remain unreacted. Methods and articles are also described.
    Type: Application
    Filed: June 7, 2021
    Publication date: June 22, 2023
    Inventors: Thomas P. Klun, Matthew R.D. Smith, Henrik B. van Lengerich, Kayla C. Niccum, Christopher S. Lyons
  • Publication number: 20220367325
    Abstract: A pattern of microchannels is formed on a major surface of a substrate on the side opposite an adhesive surface thereof. Through holes extend through the substrate and are connected to the pattern of microchannels. Solid circuit dies are adhesively bonded to the adhesive surface of the substrate. The contact pads of the solid circuit dies at least partially overlie and face the through holes. Electrically conductive channel traces are formed to electrically connect to the solid circuit dies via the through holes.
    Type: Application
    Filed: September 17, 2020
    Publication date: November 17, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Saagar A. Shah, Kara A. Meyers, Mikhail L. Pekurovsky, Jonathan W. Kemling, David C. Mercord, Pranati Mondkar
  • Publication number: 20220363957
    Abstract: The present disclosure relates to adhesive article that include a first, stretch releasable adhesive and patterned adhesive elements on, within, or partially embedded in a surface of the adhesive. The adhesive elements can act as spacers between the adhesive surface and the mounting surface to prevent full contact and wet out of the first adhesive, whereby the article can be removed from the wall and placed at a new location without damage to the wall surface or the article. Once the final location is selected, the separation created by the engineered elements can be overcome by applying sufficient pressure; the first adhesive can contact and adhere more permanently to the wall. Thus, a stretch releasable adhesive articles of the present disclosure can move freely relative to the desired mounting surface, while developing additional tack and holding power after sufficient pressure is applied.
    Type: Application
    Filed: November 3, 2020
    Publication date: November 17, 2022
    Inventors: Nishant C. Kumar, Payam Khodaparast, Ross E. Behling, Kayla C. Niccum
  • Publication number: 20220209436
    Abstract: Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 30, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Mikhail L. Pekurovsky, Nicholas T. Gabriel, Roger W. Barton, Kara A. Meyers, Saagar A. Shah, Jonathan W. Kemling, Richard C. Webb
  • Publication number: 20220189790
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 16, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R.D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Publication number: 20220078918
    Abstract: A method for manufacturing an electronic device includes providing a substrate with a first major surface having a microchannel, wherein the microchannel has a first end and a second end; dispensing a conductive liquid in the microchannel to cause the conductive liquid to move, primarily by capillary pressure, in a first direction toward the first end of the microchannel and in a second direction toward the second end of the microchannel; and solidifying the conductive liquid to form an electrically conductive trace electrically connecting a first electronic device at the first end of the microchannel to a second electronic device at the second end of the microchannel.
    Type: Application
    Filed: December 30, 2019
    Publication date: March 10, 2022
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Kayla C. Niccum, Kara A. Meyers, Christopher G. Walker
  • Publication number: 20220037278
    Abstract: An article includes a solid circuit die on a first major surface of a substrate, wherein the solid circuit die includes an arrangement of contact pads, and wherein at least a portion of the contact pads in the arrangement of contact pads are at least partially exposed on the first major surface of the substrate to provide an arrangement of exposed contact pads; a guide layer including an arrangement of microchannels, wherein the guide layer contacts the first major surface of the substrate such that at least some microchannels in the arrangement of microchannels overlie the at least some exposed contact pads in the arrangement of exposed contact pads; and a conductive particle-containing liquid in at least some of the microchannels. Other articles and methods of manufacturing the articles are described.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 3, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Daniel B. Taylor, Mikhail L. Pekurovsky, Kara A. Meyers, Kayla C. Niccum, David J. Rowe, Gino L. Pitera
  • Publication number: 20210319955
    Abstract: Ultrathin and flexible electrical devices including circuit dies such as, for example, a capacitor chip, a resistor chip, and/or an inductor chip, and methods of making and using the same are provided. Circuit dies are attached to a major surface of a flexible substrate having channels Electrically conductive traces are formed in the channels, self-aligned with the circuit dies, and in direct contact with the bottom surface of the circuit dies.
    Type: Application
    Filed: May 16, 2019
    Publication date: October 14, 2021
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Thomas J. Metzler, Kayla C. Niccum, Eric A. Vandre, Aniruddha Upadhye, Robert R. Owings, Jeremy K. Larsen, Zohaib Hameed
  • Patent number: 10971468
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 6, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gilman, Shawn C. Dodds, Thomas J. Metzler, Matthew R. D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum
  • Publication number: 20190273061
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Application
    Filed: November 16, 2017
    Publication date: September 5, 2019
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gillman, Shawn C. Dodds, Thomas J. Metzler, Matthew R.D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum