Patents by Inventor Kayvan Najarian
Kayvan Najarian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230394340Abstract: A method for denoising magnetic resonance images and data is disclosed herein. An example method includes receiving a series of MRF images from a scanning device; identifying one or more subsets of voxels for the series of MRF images; generating one or more sets of eigenvectors, each set of the one or more sets of eigenvectors corresponding to one of the one or more subsets of voxels, and each eigenvector of the one or more sets of eigenvectors having a corresponding eigenvalue; applying a noise distribution model to each of the eigenvalues; identifying a subset of the eigenvalues as corresponding to noise based on the noise distribution model; and reconstructing the series of MRF images without the subset of eigenvalues identified as corresponding to noise.Type: ApplicationFiled: May 30, 2023Publication date: December 7, 2023Inventors: Kayvan Najarian, Justin Zhang, Keith D. Aaronson, Jessica R. Golbus, Jonathan Gryak, Harm Derksen, Heming Yao
-
Publication number: 20230350973Abstract: Methods and systems for identifying and classifying multilinear data sets into a plurality of classes using invariant theory are disclosed herein. An example method includes receiving an input data set; computing a change of coordinates for each mode of the plurality of modes for the input data set using an invariant theory optimization algorithm by (i) constructing a chosen group and (ii) determining a group element in the chosen group; transforming the input data set into a relocated data set by applying each change of coordinates for each respective mode of the plurality of modes for the input data set by multiplying the subset of the input data set for each mode by the at least one matrix corresponding to each respective mode; and classifying, based on distances between coordinates in the relocated data set, the input data set into the plurality of classes.Type: ApplicationFiled: April 26, 2023Publication date: November 2, 2023Inventors: Kayvan Najarian, Olivia Pifer Alge, Jonathan Gryak, Harm Derksen, Cristian Minoccheri
-
Patent number: 11615527Abstract: A system for automatically analyzing a video recording of a colonoscopy includes a processor and memory storing instructions, which when executed by the processor, cause the processor to receive the video recording of the colonoscopy performed on the colon and detect informative frames in the video recording. A frame is informative if the clarity of the frame is above a threshold or if the frame includes clinically relevant information about the colon. The instructions cause the processor to generate scores indicating severity levels of a disease for a plurality of the informative frames, estimate locations of the plurality of the informative frames in the colon, and generate an output indicating a distribution of the scores over one or more segments of the colon by combining the scores generated for the plurality of the informative frames and the estimated locations of the plurality of the informative frames in the colon.Type: GrantFiled: May 15, 2020Date of Patent: March 28, 2023Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kayvan Najarian, Heming Yao, Sayedmohammadreza Soroushmehr, Jonathan Gryak, Ryan W. Stidham
-
Patent number: 11531851Abstract: Computational algorithms integrate and analyze data to consider multiple interdependent, heterogeneous sources and forms of patient data, and using a classification model, provide new learning paradigms, including privileged learning and learning with uncertain clinical data, to determine patient status for conditions such as acute respiratory distress syndrome (ARDS) or non-ARDS.Type: GrantFiled: February 5, 2020Date of Patent: December 20, 2022Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kayvan Najarian, Jonathan Gryak, Elyas Sabeti, Joshua Drews
-
Publication number: 20220246251Abstract: Techniques for predicting drug and target interactions in incomplete matrices are provided for use in new drug discovery and drug repurposing. Matrix completion is achieved through matrix factorization that employs coupled matrix-matrix completion processes capable of completing a drug-target interaction matrix using coupled input matrices of each dataset. Matrix completion techniques also extend to using coupled tensors containing multiple slices of each dataset and using coupled tensor-matrix completion techniques for predicting drug and target interactions.Type: ApplicationFiled: March 17, 2021Publication date: August 4, 2022Inventors: Maryam Bagherian, Kayvan Najarian, Harm Derksen
-
Publication number: 20220133159Abstract: A method for noninvasively measuring hemodynamic variables of a person includes physically configuring a sensor to measure the pulse of a person. The sensor generates a pulse waveform indicative of the pulse of the person. A processor obtains the pulse waveform from the sensor and the processor determines a reflection coefficient and reflection delay between an incident and a reflected wave, from which the processor determines the hemodynamic variables of the person from the reflection coefficient and the reflection delay.Type: ApplicationFiled: October 29, 2021Publication date: May 5, 2022Inventors: Sardar Ansari, Kenn Oldham, Kevin R. Ward, Kayvan Najarian, Lu Wang
-
Patent number: 11172839Abstract: A wearable assembly has a pulse plethysmography (PPG) sensor and a piezoelectric pressure sensor and is attachable to a patient's finger or other area corresponding to a peripheral vascular region, and further includes a signal processor configured to monitor blood flow dependent measurements and pressure measurements over time, comparing these measurements to determine properties of the vascular region, such as vascular resistance of a blood vessel, vascular radius of the blood vessel, vascular stiffness of the vascular region, blood pressure, and/or cardiac vascular power. The signal processor may apply a hysteresis comparison of the sensor outputs, e.g., using an elliptical model, and in some examples may apply an extended Kalman filter for optimizing output of the vascular region properties.Type: GrantFiled: October 25, 2017Date of Patent: November 16, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kevin R. Ward, Sardar Ansari, Lu Wang, Kayvan Najarian, Kenn Oldham
-
Publication number: 20210338171Abstract: A method of generating an assessment of medical condition for a patient includes obtaining a patient data tensor indicative of a plurality of tests conducted on the patient, obtaining a set of tensor factors, each tensor factor of the set of tensor factors being indicative of a decomposition of training tensor data for the plurality of tests, the decomposition amplifying low rank structure of the training tensor data, determining a patient tensor factor for the patient based on the obtained patient data tensor and the obtained set of tensor factors, applying the determined patient tensor factor to a classifier such that the determined further tensor factor establishes a feature vector for the patient, the classifier being configured to process the feature vector to generate the assessment, and providing output data indicative of the assessment.Type: ApplicationFiled: February 4, 2021Publication date: November 4, 2021Inventors: Hendrikus Derksen, Neriman Tokcan, Kayvan Najarian, Jonathan Gryak
-
Patent number: 11154254Abstract: Systems and methods for predicting and/or detecting cardiac events based on real-time biomedical signals are discussed herein. In various embodiments, a machine learning algorithm may be utilized to predict and/or detect one or more medical conditions based on obtained biomedical signals. For example, the systems and methods described herein may utilize ECG signals to predict and detect cardiac events. In various embodiments, patterns identified within a signal may be assigned letters (i.e., encoded as distributions of letters). Based on the known morphology of a signal, states within the signal may be identified based on the distribution of letters in the signal. When applied in the in-vehicle environment, drivers or passengers within the vehicle may be alerted when an individual within the vehicle is, or is about to, experience a cardiac event.Type: GrantFiled: July 22, 2020Date of Patent: October 26, 2021Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kayvan Najarian, Hendrikus Derksen, Zhi Li, Jonathan Gryak, Pujitha Gunaratne
-
Patent number: 10936913Abstract: An automated pruning technique is proposed for reducing the size of a convolutional neural network. A large-sized network is trained and then connections between layers are explored to remove redundant parameters. Specifically, a scaling neural subnetwork is connected to the neural network and designed to infer importance of the filters in the neural network during training of the neural network. Output from the scaling neural subnetwork can then be used to remove filters from the neural network, thereby reducing the size of the convolutional neural network.Type: GrantFiled: March 19, 2019Date of Patent: March 2, 2021Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, DENSO International America, Inc.Inventors: Heming Yao, Kayvan Najarian, Jonathan Gryak, Wei Zhang
-
Publication number: 20210022631Abstract: A method of determining a diameter of a sheath of an optic nerve includes obtaining, by a processor, scan data representative of the optic nerve sheath, analyzing, by the processor, the scan data to find a position of a globe-optic nerve interface point, segmenting, by the processor, the scan data, processing, by the processor, the segmented scan data at an offset from the position of the globe-optic nerve interface point to determine boundary positions of the optic nerve sheath, and calculating, by the processor, the diameter of the optic nerve sheath based on the determined boundary positions.Type: ApplicationFiled: August 28, 2019Publication date: January 28, 2021Inventors: Sayedmohammadreza Soroushmehr, Kayvan Najarian, Venkatakrishna Rajajee, Kevin Ward, Jonathan Gryak, Craig A. Williamson, Mohamad H. Tiba
-
Publication number: 20200364859Abstract: A system for automatically analyzing a video recording of a colonoscopy includes a processor and memory storing instructions, which when executed by the processor, cause the processor to receive the video recording of the colonoscopy performed on the colon and detect informative frames in the video recording. A frame is informative if the clarity of the frame is above a threshold or if the frame includes clinically relevant information about the colon. The instructions cause the processor to generate scores indicating severity levels of a disease for a plurality of the informative frames, estimate locations of the plurality of the informative frames in the colon, and generate an output indicating a distribution of the scores over one or more segments of the colon by combining the scores generated for the plurality of the informative frames and the estimated locations of the plurality of the informative frames in the colon.Type: ApplicationFiled: May 15, 2020Publication date: November 19, 2020Inventors: Kayvan NAJARIAN, Heming YAO, Sayedmohammadreza SOROUSHMEHR, Jonathan GRYAK, Ryan W. STIDHAM
-
Publication number: 20200345313Abstract: Systems and methods for predicting and/or detecting cardiac events based on real-time biomedical signals are discussed herein. In various embodiments, a machine learning algorithm may be utilized to predict and/or detect one or more medical conditions based on obtained biomedical signals. For example, the systems and methods described herein may utilize ECG signals to predict and detect cardiac events. In various embodiments, patterns identified within a signal may be assigned letters (i.e., encoded as distributions of letters). Based on the known morphology of a signal, states within the signal may be identified based on the distribution of letters in the signal. When applied in the in-vehicle environment, drivers or passengers within the vehicle may be alerted when an individual within the vehicle is, or is about to, experience a cardiac event.Type: ApplicationFiled: July 22, 2020Publication date: November 5, 2020Inventors: KAYVAN NAJARIAN, HENDRIKUS DERKSEN, ZHI LI, JONATHAN GRYAK, PUJITHA GUNARATNE
-
Patent number: 10786208Abstract: Systems and methods for predicting and/or detecting cardiac events based on real-time biomedical signals are discussed herein. In various embodiments, a machine learning algorithm may be utilized to predict and/or detect one or more medical conditions based on obtained biomedical signals. For example, the systems and methods described herein may utilize ECG signals to predict and detect cardiac events. In various embodiments, patterns identified within a signal may be assigned letters (i.e., encoded as distributions of letters). Based on the known morphology of a signal, states within the signal may be identified based on the distribution of letters in the signal. When applied in the in-vehicle environment, drivers or passengers within the vehicle may be alerted when an individual within the vehicle is, or is about to, experience a cardiac event.Type: GrantFiled: September 20, 2019Date of Patent: September 29, 2020Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kayvan Najarian, Hendrikus Derksen, Zhi Li, Jonathan Gryak, Pujitha Gunaratne
-
Publication number: 20200250496Abstract: Computational algorithms integrate and analyze data to consider multiple interdependent, heterogeneous sources and forms of patient data, and using a classification model, provide new learning paradigms, including privileged learning and learning with uncertain clinical data, to determine patient status for conditions such as acute respiratory distress syndrome (ARDS) or non-ARDS.Type: ApplicationFiled: February 5, 2020Publication date: August 6, 2020Inventors: Kayvan Najarian, Jonathan Gryak, Elyas Sabeti, Joshua Drews
-
Patent number: 10650667Abstract: Implementations of a system for determining the relevancy of a plurality of alarms may include: a plurality of sensors configured to be coupled to a patient, wherein the plurality of sensors is configured to gather physiological data, a medical monitoring device coupled to the plurality of sensors through a telecommunication channel, and wherein the medical monitoring device is configured to determine a physiological state of the patient using the physiological data. The medical monitoring device may be further configured to issue a plurality of alarm states, and a processing unit coupled to the medical monitoring device through a telecommunication channel, is then configured to evaluate the plurality of alarm states, determine the relevancy of each alarm state of the plurality of alarm states, and issue one or more alarms corresponding with each relevant alarm state to a computing device associated with a user.Type: GrantFiled: November 19, 2018Date of Patent: May 12, 2020Assignees: Arizona Board of Regents acting for and on behalf of Northern Arizona University, The Regents of the University of MichiganInventors: Fatemeh Afghah, Abolfazl Razi, Kayvan Najarian, Sayedmohammadreza Soroushmehr
-
Patent number: 10610113Abstract: The invention is a passive, wearable sensor that uses a thin piezoelectric material to produce a time history of blood pressure of the patient, with signal processing algorithms to extract physiological information. The sensor consists of a piezoelectric transducer set in a polymer laminate that can be applied to the finger or wrist of the patient. During use, a combination of compressive and bending deformation in the piezoelectric layer in response to blood pressure in the finger or wrist as a voltage output. Using signal processing techniques, the raw signal is filtered and decomposed to obtain a information to form derivative signals such as blood pressure, pulse pressure, pulse pressure variability, heart rate, heart rate variability, and respiratory rate which can be very important pre-cursors in the monitoring of the patient's physiological conditions.Type: GrantFiled: March 31, 2015Date of Patent: April 7, 2020Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kayvan Najarian, Kenn Oldham, Daniel Slavin, Ashwin Belle, Kevin R. Ward, Sardar Ansari, Rodney C. Daniels
-
Publication number: 20200054221Abstract: A wearable assembly has a pulse plethysmography (PPG) sensor and a piezoelectric pressure sensor and is attachable to a patient's finger or other area corresponding to a peripheralvascular region, and further includes a signal processor configured to monitor blood flow dependent measurements and pressure measurements over time, comparing these measurements to determine properties of the vascular region, such as vascular resistance of a blood vessel, vascular radius of the blood vessel, vascular stiffness of the vascular region, blood pressure, and/or cardiac vascular power. The signal processor may apply a hysteresis comparison of the sensor outputs, e.g., using an elliptical model, and in some examples may apply an extended Kalman filter for optimizing output of the vascular region properties.Type: ApplicationFiled: October 25, 2017Publication date: February 20, 2020Inventors: Kevin R. Ward, Sardar Ansari, Lu Wang, Kayvan Najarian, Kenn Oldham
-
Publication number: 20200022658Abstract: Systems and methods for predicting and/or detecting cardiac events based on real-time biomedical signals are discussed herein. In various embodiments, a machine learning algorithm may be utilized to predict and/or detect one or more medical conditions based on obtained biomedical signals. For example, the systems and methods described herein may utilize ECG signals to predict and detect cardiac events. In various embodiments, patterns identified within a signal may be assigned letters (i.e., encoded as distributions of letters). Based on the known morphology of a signal, states within the signal may be identified based on the distribution of letters in the signal. When applied in the in-vehicle environment, drivers or passengers within the vehicle may be alerted when an individual within the vehicle is, or is about to, experience a cardiac event.Type: ApplicationFiled: September 20, 2019Publication date: January 23, 2020Inventors: Kayvan Najarian, Hendrikus Derksen, Zhi Li, Jonathan Gryak, Pujitha Gunaratne
-
Patent number: 10463314Abstract: Systems and methods for predicting and/or detecting cardiac events based on real-time biomedical signals are discussed herein. In various embodiments, a machine learning algorithm may be utilized to predict and/or detect one or more medical conditions based on obtained biomedical signals. For example, the systems and methods described herein may utilize ECG signals to predict and detect cardiac events. In various embodiments, patterns identified within a signal may be assigned letters (i.e., encoded as distributions of letters). Based on the known morphology of a signal, states within the signal may be identified based on the distribution of letters in the signal. When applied in the in-vehicle environment, drivers or passengers within the vehicle may be alerted when an individual within the vehicle is, or is about to, experience a cardiac event.Type: GrantFiled: July 19, 2018Date of Patent: November 5, 2019Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Kayvan Najarian, Hendrikus Derksen, Zhi Li, Jonathan Gryak, Pujitha Gunaratne