Patents by Inventor Kazi M. Islam

Kazi M. Islam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11909352
    Abstract: A spectrum splitting, transmissive concentrating photovoltaic (tCPV) module is proposed and designed for a hybrid photovoltaic-solar thermal (PV/T) system. The system may be able to fully utilize the full spectrum of incoming sunlight. By utilizing III-V triple junction solar cells with bandgaps of approximately 2.1 eV, 1.7 eV, and 1.4 eV in the module, ultraviolet (UV) and visible light (in-band light) are absorbed and converted to electricity, while infrared (IR) light (out-of-band light) passes through and is captured by a solar thermal receiver and stored as heat. The stored heat energy may be dispatched as electricity or process heat as needed. The tCPV module may have an overall power conversion efficiency exceeding 43.5% for above bandgap (in-band) light under a standard AM1.5D solar spectrum with an average concentration ratio of 400 suns. Passive and/or active cooling methods may be used to keep cells below 110° C.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: February 20, 2024
    Assignee: THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND
    Inventors: Matthew David Escarra, Qi Xu, Yaping Ji, Brian C. Riggs, Adam Ollanik, Kazi M. Islam, Daniel Codd, Vince Romanin, Nicholas David Farrar-Foley
  • Publication number: 20230408406
    Abstract: Disclosed herein is a spectroscopy device incorporating a mid-infrared laser. In one particular embodiment a spectroscopy device is provided including: a substrate; a single mode laser positioned on the substrate; a single mode detector positioned opposite to the single mode laser on the substrate. A gap is formed between the single mode laser and the single mode detector and a substance is positioned in the gap. The single mode laser is configured to output a tunable narrow wavelength of radiation towards the detector and when the single mode laser outputs a wavelength of radiation overlapping one of the substance's rotational-vibrational energy levels, the substance at least partially absorbs the radiation. The single mode detector is configured to measure the amount of narrow wavelength radiation that is not absorbed by the substance between the single mode detector and the single mode laser.
    Type: Application
    Filed: June 20, 2023
    Publication date: December 21, 2023
    Applicant: California Institute of Technology
    Inventors: Mathieu Fradet, Ryan M. Briggs, Kazi M. Islam
  • Publication number: 20220311378
    Abstract: A hybrid receiver for a concentrator photovoltaic-thermal power system combines a concentrator photovoltaic (CPV) module and a thermal module that converts concentrated sunlight into electrical energy and thermal heat. Heat transfer fluid flowing through a cooling block removes waste heat generated by photovoltaic cells in the CPV module. The heat transfer fluid then flows through a helical tube illuminated by sunlight that misses the CPV module. Only one fluid system is used to both remove the photovoltaic-cell waste heat and capture high-temperature thermal energy from sunlight. Fluid leaving the hybrid receiver can have a temperature greater than 200° C., and therefore may be used as a source of process heat for a variety of commercial and industrial applications. The hybrid receiver can maintain the photovoltaic cells at temperatures below 110° C. while achieving overall energy conversion efficiencies exceeding 80%.
    Type: Application
    Filed: June 14, 2020
    Publication date: September 29, 2022
    Inventors: Matthew David ESCARRA, Luke ARTZT, Yaping JI, Daniel CODD, Matthew BARRIOS, Kazi M. ISLAM, David M. BAR-OR, Jacqueline C. FAILLA, Claire C. DAVIS, Maxwell W. WOODY
  • Publication number: 20220310864
    Abstract: A spectrum-splitting concentrator photovoltaic (CPV) module utilizes direct fluid cooling of photovoltaic cells in which an array of photovoltaic cells is fully immersed in a flowing heat transfer fluid. Specifically, at least a portion of both the front face and the rear face of each photovoltaic cell comes into direct contact with heat transfer fluid, thereby enhancing coupling of waste heat out of the photovoltaic cells and into the heat transfer fluid. The CPV module is designed to maximize transmission of infrared light not absorbed by the photovoltaic cells, and therefore may be combined with a thermal receiver that captures the transmitted infrared light as part of a hybrid concentrator photovoltaic-thermal system.
    Type: Application
    Filed: June 14, 2020
    Publication date: September 29, 2022
    Inventors: Matthew David ESCARRA, Kazi M. ISLAM, Ji YAPING, Daniel CODD, David M. BAR-OR, Jacqueline C. FAILLA, Claire C. DAVIS, Maxwell W. WOODY
  • Publication number: 20190115869
    Abstract: A spectrum splitting, transmissive concentrating photovoltaic (tCPV) module is proposed and designed for a hybrid photovoltaic-solar thermal (PV/T) system. The system may be able to fully utilize the full spectrum of incoming sunlight. By utilizing III-V triple junction solar cells with bandgaps of approximately 2.1 eV, 1.7 eV, and 1.4 eV in the module, ultraviolet (UV) and visible light (in-band light) are absorbed and converted to electricity, while infrared (IR) light (out-of-band light) passes through and is captured by a solar thermal receiver and stored as heat. The stored heat energy may be dispatched as electricity or process heat as needed. The tCPV module may have an overall power conversion efficiency exceeding 43.5% for above bandgap (in-band) light under a standard AM1.5D solar spectrum with an average concentration ratio of 400 suns. Passive and/or active cooling methods may be used to keep cells below 110° C.
    Type: Application
    Filed: March 28, 2017
    Publication date: April 18, 2019
    Applicant: The Administrators of the Tulane Educational Fund
    Inventors: Matthew David Escarra, Qi Xy, Yaping Ji, Brian C. Riggs, Adam Ollanik, Kazi M. Islam, Daniel Codd, Vince Romanin, Nicholas David Farrar-Foley