Patents by Inventor Kazim Sevens
Kazim Sevens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150289044Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. An amplifier control circuit dynamically detects the insertion or removal of a plug in the jack and configures the amplifiers accordingly. When a plug is inserted into the jack, the mechanical switch disconnects the first speaker from the first amplifier, and the fourth amplifier is tri-stated disconnect the second speaker. The first and third amplifiers are configured to drive the first and second channels of the headphones, while the third amplifier drives the headphone common point (shield ring) as a virtual ground connection.Type: ApplicationFiled: June 8, 2015Publication date: October 8, 2015Inventor: Kazim Seven
-
Patent number: 9054656Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. An amplifier control circuit dynamically detects the insertion or removal of a plug in the jack and configures the amplifiers accordingly. When a plug is inserted into the jack, the mechanical switch disconnects the first speaker from the first amplifier, and the fourth amplifier is tri-stated disconnect the second speaker. The first and third amplifiers are configured to drive the first and second channels of the headphones, while the third amplifier drives the headphone common point (shield ring) as a virtual ground connection.Type: GrantFiled: June 25, 2013Date of Patent: June 9, 2015Assignee: NATIONAL SEMICONDUCTOR CORPORATIONInventor: Kazim Seven
-
Publication number: 20130293302Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. An amplifier control circuit dynamically detects the insertion or removal of a plug in the jack and configures the amplifiers accordingly. When a plug is inserted into the jack, the mechanical switch disconnects the first speaker from the first amplifier, and the fourth amplifier is tri-stated disconnect the second speaker. The first and third amplifiers are configured to drive the first and second channels of the headphones, while the third amplifier drives the headphone common point (shield ring) as a virtual ground connection.Type: ApplicationFiled: June 25, 2013Publication date: November 7, 2013Inventor: Kazim Seven
-
Patent number: 8493140Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. To suppress click and pop, an amplifier control circuit maintains certain amplifiers (depending on headphone or speaker mode) tri-stated until input coupling capacitors have fully charged and an input signal exceeding a predetermined amount is detected.Type: GrantFiled: June 1, 2012Date of Patent: July 23, 2013Assignee: National Semiconductor CorporationInventor: Kazim Seven
-
Publication number: 20130141163Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. To suppress click and pop, an amplifier control circuit maintains certain amplifiers (depending on headphone or speaker mode) tri-stated until input coupling capacitors have fully charged and an input signal exceeding a predetermined amount is detected.Type: ApplicationFiled: June 1, 2012Publication date: June 6, 2013Applicant: TEXAS INSTRUMENTS INCORPORATEDInventor: Kazim Seven
-
Patent number: 8194892Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. An amplifier control circuit dynamically detects the insertion or removal of a plug in the jack and configures the amplifiers accordingly. When a plug is inserted into the jack, the mechanical switch disconnects the first speaker from the first amplifier, and the fourth amplifier is tri-stated disconnect the second speaker. The first and third amplifiers are configured to drive the first and second channels of the headphones, while the third amplifier drives the headphone common point (shield ring) as a virtual ground connection.Type: GrantFiled: January 22, 2007Date of Patent: June 5, 2012Assignee: Texas Instruments IncorporatedInventor: Kazim Seven
-
Patent number: 7315204Abstract: Audio power amplifier circuits that are arranged to operate in either a class AB or a class D operating mode. A drive circuit is configured to share control between a class AB driver and a class D modulator/driver circuit. The input signal level is monitored to determine their levels. When the input signal level is below a minimum signal level, the audio power amplifier circuits are operated in a standby mode. The power amplifier circuits are operated in a class AB mode when the input signal levels are in a defined operating range that exceeds the minimum signal level. When the input signal levels exceed a maximum signal threshold, the power amplifier circuits are operated in a class D mode. Hysterisis can be employed to minimize oscillation conditions about any one particular trip-point for the operating modes.Type: GrantFiled: July 8, 2005Date of Patent: January 1, 2008Assignee: National Semiconductor CorporationInventor: Kazim Seven
-
Publication number: 20070127742Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. An amplifier control circuit dynamically detects the insertion or removal of a plug in the jack and configures the amplifiers accordingly. When a plug is inserted into the jack, the mechanical switch disconnects the first speaker from the first amplifier, and the fourth amplifier is tri-stated disconnect the second speaker. The first and third amplifiers are configured to drive the first and second channels of the headphones, while the third amplifier drives the headphone common point (shield ring) as a virtual ground connection.Type: ApplicationFiled: January 22, 2007Publication date: June 7, 2007Applicant: National Semiconductor CorporationInventor: Kazim Seven
-
Patent number: 7170266Abstract: A fully differential class D amplifier includes a pulse width modulator and a power stage. The pulse width modulator is arranged to employ a differential output signal provided from the power stage as a feedback signal. The pulse width modulator includes a transimpedance amplifier that is arranged to generate a triangle wave from the input signal and the feedback signal. The transimpedance amplifier is arranged to generate the triangle wave such that the triangle wave that has approximately a 50% duty cycle when no input signal is applied. Additionally, the input signal adjusts the frequency of the triangle wave such that the triangle wave is a spread spectrum signal. The triangle wave is compared to a threshold signal to provide a pulse width modulated signal.Type: GrantFiled: June 18, 2004Date of Patent: January 30, 2007Assignee: National Semiconductor CorporationInventors: Kazim Seven, Ansuya P. Bhatt
-
Publication number: 20070018719Abstract: Audio power amplifier circuits that are arranged to operate in either a class AB or a class D operating mode. A drive circuit is configured to share control between a class AB driver and a class D modulator/driver circuit. The input signal level is monitored to determine their levels. When the input signal level is below a minimum signal level, the audio power amplifier circuits are operated in a standby mode. The power amplifier circuits are operated in a class AB mode when the input signal levels are in a defined operating range that exceeds the minimum signal level. When the input signal levels exceed a maximum signal threshold, the power amplifier circuits are operated in a class D mode. Hysterisis can be employed to minimize oscillation conditions about any one particular trip-point for the operating modes.Type: ApplicationFiled: July 8, 2005Publication date: January 25, 2007Applicant: National Semiconductor CorporationInventor: Kazim Seven
-
Patent number: 7167569Abstract: First and second channel bridge amplifiers are dynamically configured to drive either speakers or headphones. The first channel bridge amplifier includes a first amplifier driving one end of a first speaker through a mechanical switch in a headphone-jack, and a second amplifier driving another end of the first speaker. The second channel bridge amplifier includes third and fourth amplifiers driving respective ends of a second speaker. An amplifier control circuit dynamically detects the insertion or removal of a plug in the jack and configures the amplifiers accordingly. When a plug is inserted into the jack, the mechanical switch disconnects the first speaker from the first amplifier, and the fourth amplifier is tri-stated disconnect the second speaker. The first and third amplifiers are configured to drive the first and second channels of the headphones, while the third amplifier drives the headphone common point (shield ring) as a virtual ground connection.Type: GrantFiled: October 25, 2000Date of Patent: January 23, 2007Assignee: National Semiconductor CorporationInventor: Kazim Seven
-
Patent number: 6885853Abstract: A receiver (22) includes an IF filter (44) and a nearby process-variant circuit (80) formed on a common semiconductor substrate (24). The actual center frequency of the IF filter (44) is determined by resistors (70, 74) and capacitors (72, 76) exhibiting imprecise values and is unlikely to equal a nominal center frequency. The process-variant circuit (80) includes a test resistor (102) and test capacitor (104) formed using the same resistor-forming and capacitor-forming processes used to form the IF filter resistors (70, 74) and capacitors (72, 76). In response a test signal (88) from the process-variant circuit (80) and a reference signal (84) from a process-invariant circuit (82), a tuning parameter for a tunable local oscillator (90) is determined so that a local oscillation signal (94) will exhibit a frequency which, when mixed with an RF signal (38) yields an IF signal (42) at the actual center frequency of the IF filter (44).Type: GrantFiled: April 11, 2001Date of Patent: April 26, 2005Assignee: National Scientific CorporationInventors: Kazim Sevens, Majid M. Hashemi, Ismail H. Ozguc
-
Patent number: 6696884Abstract: A filtered reference voltage is provided with improved PSRR without the use of a large capacitor. First and second reference voltages are generated, where the reference voltages are centered about an input reference voltage. A first small valued capacitor circuit samples a selected one of the first and second reference voltages. The selected one is determined by the comparison between the filtered reference voltage and the input reference voltage. A second small valued capacitor circuit is periodically coupled to the first capacitor circuit such that charge redistribution occurs. The overall voltage on the second capacitor circuit is increased when the filtered reference voltage is less than the input reference voltage, or decreased when the filtered reference voltage is greater than the input reference voltage. The voltage from the second capacitor circuit is buffered to provide the filtered reference voltage. The overall system is suitable for an integrated circuit.Type: GrantFiled: December 10, 2002Date of Patent: February 24, 2004Assignee: National Semiconductor CorporationInventor: Kazim Seven
-
Publication number: 20020151292Abstract: A receiver (22) includes an IF filter (44) and a nearby process-variant circuit (80) formed on a common semiconductor substrate (24). The actual center frequency of the IF filter (44) is determined by resistors (70, 74) and capacitors (72, 76) exhibiting imprecise values and is unlikely to equal a nominal center frequency. The process-variant circuit (80) includes a test resistor (102) and test capacitor (104) formed using the same resistor-forming and capacitor-forming processes used to form the IF filter resistors (70, 74) and capacitors (72, 76). In response a test signal (88) from the process-variant circuit (80) and a reference signal (84) from a process-invariant circuit (82), a tuning parameter for a tunable local oscillator (90) is determined so that a local oscillation signal (94) will exhibit a frequency which, when mixed with an RF signal (38) yields an IF signal (42) at the actual center frequency of the IF filter (44).Type: ApplicationFiled: April 11, 2001Publication date: October 17, 2002Inventors: Kazim Sevens, Majid M. Hashemi, Ismail H. Ozguc
-
Patent number: 6154094Abstract: An output stage driver circuit comprising two parallel class AB stages running at slightly different quiescent currents, the difference of which is scaled up through a current mirror is disclosed which provides a temperature stable precisely controlled quiescent current for the output stage. A current limited voltage source is provided to ensure inherent short circuit protection with instantaneous response to short circuit or excessive load current conditions.Type: GrantFiled: April 30, 1999Date of Patent: November 28, 2000Assignee: National Semiconductor CorporationInventor: Kazim Seven
-
Patent number: 5973563Abstract: An output stage driver circuit comprising two parallel class AB stages running at slightly different quiescent currents, the difference of which is scaled up through a current mirror is disclosed which provides a temperature stable precisely controlled quiescent current for the output stage. A current limited voltage source is provided to ensure inherent short circuit protection with instantaneous response to short circuit or excessive load current conditions.Type: GrantFiled: December 10, 1997Date of Patent: October 26, 1999Assignee: National Semiconductor CorporationInventor: Kazim Seven