Patents by Inventor Kazuaki Nakano
Kazuaki Nakano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240303558Abstract: A travel plan generation device according to an aspect of the present invention is provided with a generation unit that generates a travel plan for traveling a plurality of points by a plurality of mobile bodies by performing, at each output step, processing of selecting any one point out of the plurality of points by using a recurrent neural network configured to output visiting probabilities at the plurality of points when point information regarding the plurality of points and mobile body information regarding the plurality of mobile bodies are input, and mask information indicating an unselectable point out of the plurality of points, and an output unit that outputs the travel plan, in which points already selected for the plurality of mobile bodies excluding a point previously selected for each mobile body are set as unselectable points in the mask information of the each mobile body.Type: ApplicationFiled: March 9, 2021Publication date: September 12, 2024Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATIONInventors: Kazuaki AKASHI, Shunsuke KANAI, Manami OGAWA, Yusuke NAKANO, Zhao WANG
-
Publication number: 20220022433Abstract: Provided is a method for developing a secondary organ by using a non-human animal in which organ formation is inhibited, for the purpose of establishing a process for producing a functional cell such as a ? cell within the body of an animal such as a pig, the method including the step of raising a newborn or a fetus of the non-human animal in which organ formation is inhibited by complementing at least a part of the function of the organ whose formation is inhibited.Type: ApplicationFiled: October 6, 2021Publication date: January 27, 2022Applicant: PORMEDTEC CO., LTD.Inventors: Hiroshi NAGASHIMA, Hitomi MATSUNARI, Kazuaki NAKANO, Koki HASEGAWA
-
Patent number: 11172657Abstract: Provided is a method for developing a secondary organ by using a non-human animal in which organ formation is inhibited, for the purpose of establishing a process for producing a functional cell such as a ? cell within the body of an animal such as a pig, the method including the step of raising a newborn or a fetus of the non-human animal in which organ formation is inhibited by complementing at least a part of the function of the organ whose formation is inhibited.Type: GrantFiled: September 18, 2018Date of Patent: November 16, 2021Assignee: PORMEDTEC CO., LTD.Inventors: Hiroshi Nagashima, Hitomi Matsunari, Kazuaki Nakano, Koki Hasegawa
-
Publication number: 20200165633Abstract: Provided is a method for developing a secondary organ by using a non-human animal in which organ formation is inhibited, for the purpose of establishing a process for producing a functional cell such as a ? cell within the body of an animal such as a pig, the method including the step of raising a newborn or a fetus of the non-human animal in which organ formation is inhibited by complementing at least a part of the function of the organ whose formation is inhibited.Type: ApplicationFiled: September 18, 2018Publication date: May 28, 2020Applicant: MEIJI UNIVERSITYInventors: Hiroshi NAGASHIMA, Hitomi MATSUNARI, Kazuaki NAKANO, Koki HASEGAWA
-
Patent number: 10364478Abstract: The present invention provides a bainite-containing-type high-strength hot-rolled steel sheet. The steel sheet, containing C: greater than 0.07 to 0.2%, Si: 0.001 to 2.5%, Mn: 0.01 to 4%, P: 0.15% or less, S: 0.03% or less, N: 0.01% or less, Al: 0.001 to 2% and a balance being composed of Fe and impurities, has an average value of pole densities of the {100}<011> to {223}<110> orientation group at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 4.8 or less, an average crystal grain diameter is 10 ?m or less and vTrs is ?20° C. or lower, and a microstructure is composed of 35% or less in a structural fraction of pro-eutectoid ferrite and a balance of a low-temperature transformation generating phase.Type: GrantFiled: January 20, 2017Date of Patent: July 30, 2019Assignee: NIPPON STEEL CORPORATIONInventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
-
Patent number: 10267285Abstract: A rotary drive apparatus includes a housing having a housing hole defined therein, a cylindrical rotor being disposed in the housing hole, a working fluid passage through which a working fluid for applying a fluid pressure to one end face of the rotor flows, a motion limiting unit configured to limit motion of the rotor toward another end thereof, and an output shaft configured to extract rotary power of the rotor out of the rotary drive apparatus. A predetermined gap for the working fluid to flow therethrough is created between an outer circumferential surface of the rotor and a wall surface defining the housing hole.Type: GrantFiled: March 5, 2013Date of Patent: April 23, 2019Assignees: YUGEN KAISHA NAKANOSEISAKUSHO, NS CREATION LTD.Inventor: Kazuaki Nakano
-
Patent number: 10266928Abstract: A cold-rolled steel sheet satisfies that an average pole density of an orientation group of {100}<011> to {223}<110> is 1.0 to 5.0, a pole density of a crystal orientation {332}<113> is 1.0 to 4.0, a Lankford-value rC in a direction perpendicular to a rolling direction is 0.70 to 1.50, and a Lankford-value r30 in a direction making an angle of 30° with the rolling direction is 0.70 to 1.50. Moreover, the cold-rolled steel sheet includes, as a metallographic structure, by area %, a ferrite and a bainite of 30% to 99% in total and a martensite of 1% to 70%.Type: GrantFiled: January 4, 2017Date of Patent: April 23, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yuri Toda, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano, Hiroshi Yoshida, Toshio Ogawa, Kunio Hayashi, Kazuaki Nakano
-
Patent number: 10167539Abstract: A hot-rolled steel sheet wherein an average pole density of orientation group of {100}<011> to {223}<110> is 1.0 to 5.0 and pole density of crystal orientation {332}<113> is 1.0 to 4.0. The hot-rolled steel sheet includes, as a metallographic structure, by area %, 30% to 99% ferrite and bainite in total, and 1% to 70% martensite. The hot-rolled steel sheet satisfies Expression 1: dia?13 ?m, and also satisfies Expression 2: TS/fM×dis/dia?500, wherein an area fraction of the martensite is defined as fM in unit of area %, an average size of the martensite is defined as dia in unit of ?m, an average distance between the martensite is defined as dis in unit of ?m, and tensile strength of the steel sheet is defined as TS in unit of MPa.Type: GrantFiled: March 15, 2017Date of Patent: January 1, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kohichi Sano, Kunio Hayashi, Kazuaki Nakano, Riki Okamoto, Nobuhiro Fujita
-
Patent number: 10060006Abstract: This high-strength cold-rolled steel sheet contains, in mass %, C: 0.02% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 7 ?m or less.Type: GrantFiled: April 20, 2016Date of Patent: August 28, 2018Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
-
Patent number: 9988697Abstract: This high-strength hot-rolled steel sheet having excellent local deformability contains, in mass %, C: 0.07% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 10 ?m or less.Type: GrantFiled: April 12, 2012Date of Patent: June 5, 2018Assignee: NIPPON STEEL AND SUMITOMO METAL CORPORATIONInventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
-
Patent number: 9797024Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group of {100}<011> to {223}<110>, which is represented by an arithmetic average of pole density of each orientation of {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a center portion of a sheet thickness which is a range of the sheet thickness of ? to ? from a surface of the steel sheet, is 1.0 or more and 4.0 or less, the pole density of a crystal orientation of {332}<113> is 1.0 or more and 4.8 or less, an average grain size in a center in the sheet thickness is 10 ?m or less, and a microstructure includes, by a structural fraction, pearlite more than 6% and ferrite in the balance.Type: GrantFiled: August 17, 2016Date of Patent: October 24, 2017Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
-
Patent number: 9752217Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group {100}<011> to {223}<110>, which is represented by an arithmetic mean of pole densities of orientations {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> is 1.0 to 4.0 and a pole density of a crystal orientation {332}<113> is 1.0 to 4.8, in a thickness center portion which is a thickness range of ? to ? from the surface of the steel sheet; an average grain size in the thickness center portion is less than or equal to 10 ?m and a grain size of cementite precipitating in a grain boundary of the steel sheet is less than or equal to 2 ?m; and an average grain size of precipitates containing TiC in grains is less than or equal to 3 nm and a number density per unit volume is greater than or equal to 1×1016 grains/cm3.Type: GrantFiled: April 13, 2012Date of Patent: September 5, 2017Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
-
Patent number: 9719151Abstract: A steel sheet includes, by mass %: C: 0.020% to 0.080%; Si: 0.01% to 0.10%; Mn: 0.80% to 1.80%; and Al: more than 0.10% and less than 0.40%; and further includes: Nb: 0.005% to 0.095%; and Ti: 0.005% to 0.095%, in which a total amount of Nb and Ti is 0.030% to 0.100%, and the steel sheet includes, as a metallographic structure, ferrite, bainite, and other phases, an area fraction of the ferrite is 80% to 95%, an area fraction of the bainite is 5% to 20%, a total fraction of the other phases is less than 3%, a tensile strength is 590 MPa or more, and a fatigue strength ratio as a fatigue strength to the tensile strength is 0.45 or more.Type: GrantFiled: February 7, 2013Date of Patent: August 1, 2017Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Hiroyuki Tanaka, Kunio Hayashi, Toshio Ogawa, Koichi Goto, Kazuaki Nakano
-
Publication number: 20170191140Abstract: A hot-rolled steel sheet wherein an average pole density of orientation group of {100}<011> to {223}<110> is 1.0 to 5.0 and pole density of crystal orientation {332}<113> is 1.0 to 4.0. The hot-rolled steel sheet includes, as a metallographic structure, by area %, 30% to 99% ferrite and bainite in total, and 1% to 70% martensite. The hot-rolled steel sheet satisfies Expression 1: dia?13 ?m, and also satisfies Expression 2: TS/fM×dis/dia?500, wherein an area fraction of the martensite is defined as fM in unit of area %, an average size of the martensite is defined as dia in unit of ?m, an average distance between the martensite is defined as dis in unit of ?m, and tensile strength of the steel sheet is defined as TS in unit of MPa.Type: ApplicationFiled: March 15, 2017Publication date: July 6, 2017Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kohichi SANO, Kunio HAYASHI, Kazuaki NAKANO, Riki OKAMOTO, Nobuhiro FUJITA
-
Publication number: 20170183756Abstract: A cold-rolled steel sheet satisfies that an average pole density of an orientation group of {100}<011> to {223}<110> is 1.0 to 5.0, a pole density of a crystal orientation {332}<113> is 1.0 to 4.0, a Lankford-value rC in a direction perpendicular to a rolling direction is 0.70 to 1.50, and a Lankford-value r30 in a direction making an angle of 30° with the rolling direction is 0.70 to 1.50. Moreover, the cold-rolled steel sheet includes, as a metallographic structure, by area %, a ferrite and a bainite of 30% to 99% in total and a martensite of 1% to 70%.Type: ApplicationFiled: January 4, 2017Publication date: June 29, 2017Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yuri TODA, Riki OKAMOTO, Nobuhiro FUJITA, Kohichi SANO, Hiroshi YOSHIDA, Toshio OGAWA, Kunio HAYASHI, Kazuaki NAKANO
-
Publication number: 20170130294Abstract: The present invention provides a bainite-containing-type high-strength hot-rolled steel sheet. The steel sheet, containing C: greater than 0.07 to 0.2%, Si: 0.001 to 2.5%, Mn: 0.01 to 4%, P: 0.15% or less, S: 0.03% or less, N: 0.01% or less, Al: 0.001 to 2% and a balance being composed of Fe and impurities, has an average value of pole densities of the {100}<011> to {223}<110> orientation group at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 4.8 or less, an average crystal grain diameter is 10 ?m or less and vTrs is ?20° C. or lower, and a microstructure is composed of 35% or less in a structural fraction of pro-eutectoid ferrite and a balance of a low-temperature transformation generating phase.Type: ApplicationFiled: January 20, 2017Publication date: May 11, 2017Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Tatsuo YOKOI, Hiroshi SHUTO, Riki OKAMOTO, Nobuhiro FUJITA, Kazuaki NAKANO, Takeshi YAMAMOTO
-
Patent number: 9631265Abstract: A hot-rolled steel sheet satisfies that average pole density of orientation group of {100}<011> to {223}<110> is 1.0 to 5.0 and pole density of crystal orientation {332}<113> is 1.0 to 4.0. Moreover, the hot-rolled steel sheet includes, as a metallographic structure, by area %, ferrite and bainite of 30% to 99% in total and martensite of 1% to 70%. Moreover, the hot-rolled steel sheet satisfies following Expressions 1 and 2 when area fraction of the martensite is defined as fM in unit of area %, average size of the martensite is defined as dia in unit of ?m, average distance between the martensite is defined as dis in unit of ?m, and tensile strength of the steel sheet is defined as TS in unit of MPa.Type: GrantFiled: May 24, 2012Date of Patent: April 25, 2017Assignees: NIPPON STEEL, SUMITOMO METAL CORPORATIONInventors: Kohichi Sano, Kunio Hayashi, Kazuaki Nakano, Riki Okamoto, Nobuhiro Fujita
-
Patent number: 9587287Abstract: The present invention provides a bainite-containing-type high-strength hot-rolled steel sheet. The steel sheet, containing C: greater than 0.07 to 0.2%, Si: 0.001 to 2.5%, Mn: 0.01 to 4%, P: 0.15% or less, S: 0.03% or less, N: 0.01% or less, Al: 0.001 to 2% and a balance being composed of Fe and impurities, has an average value of pole densities of the {100}<011> to {223}<110> orientation group at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 4.8 or less, an average crystal grain diameter is 10 ?m or less and vTrs is ?20° C. or lower, and a microstructure is composed of 35% or less in a structural fraction of pro-eutectoid ferrite and a balance of a low-temperature transformation generating phase.Type: GrantFiled: March 29, 2012Date of Patent: March 7, 2017Assignee: NIPPON STEEL AND SUMITOMO METAL CORPORATIONInventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
-
Patent number: 9567658Abstract: A cold-rolled steel sheet satisfies that an average pole density of an orientation group of {100}<011> to {223}<110> is 1.0 to 5.0, a pole density of a crystal orientation {332}<113> is 1.0 to 4.0, a Lankford-value rC in a direction perpendicular to a rolling direction is 0.70 to 1.50, and a Lankford-value r30 in a direction making an angle of 30° with the rolling direction is 0.70 to 1.50. Moreover, the cold-rolled steel sheet includes, as a metallographic structure, by area %, a ferrite and a bainite of 30% to 99% in total and a martensite of 1% to 70%.Type: GrantFiled: May 24, 2012Date of Patent: February 14, 2017Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yuri Toda, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano, Hiroshi Yoshida, Toshio Ogawa, Kunio Hayashi, Kazuaki Nakano
-
Publication number: 20160355899Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group of {100}<011> to {223}<110>, which is represented by an arithmetic average of pole density of each orientation of {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a center portion of a sheet thickness which is a range of the sheet thickness of ? to ? from a surface of the steel sheet, is 1.0 or more and 4.0 or less, the pole density of a crystal orientation of {332}<113> is 1.0 or more and 4.8 or less, an average grain size in a center in the sheet thickness is 10 ?m or less, and a microstructure includes, by a structural fraction, pearlite more than 6% and ferrite in the balance.Type: ApplicationFiled: August 17, 2016Publication date: December 8, 2016Applicant: Nippon Steel & Sumitomo Metal CorporationInventors: Tatsuo YOKOI, Hiroshi SHUTO, Riki OKAMOTO, Nobuhiro FUJITA, Kazuaki NAKANO, Takeshi Yamamoto