Patents by Inventor Kazuaki Sakaki

Kazuaki Sakaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230399721
    Abstract: A method for collecting a heavy rare earth element from a heavy rare earth element-containing molten salt electrolysis residue and recycling the heavy rare earth element, the method includes: a step of mixing coarse particles of the molten salt electrolysis residue with a fluorinating material followed by firing, to fluorinate the coarse particles of the molten salt electrolysis residue; a step of pulverizing the coarse particles of the fluorinated molten salt electrolysis residue to obtain a powder of the molten salt electrolysis residue; and a step of mixing the powder of the molten salt electrolysis residue with R, an R-M alloy, or an R-M-B alloy (wherein R is one or more types of rare earth elements selected from the group consisting of Y, La, Ce, Nd, Pr, Sm, Gd, Dy, Tb, and Ho, M is a transition metal such as Fe or Co, and B is boron), heating and melting the mixture, separating a molten alloy from slag, and selectively extracting the heavy rare earth element into the molten alloy.
    Type: Application
    Filed: October 14, 2021
    Publication date: December 14, 2023
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Koichi HIROTA, Eiichiro IWANO, Kazuaki SAKAKI
  • Publication number: 20230005646
    Abstract: The present invention provides a rare-earth sintered magnet that is characterized in that: R (R indicates one or more elements selected from rare-earth elements, wherein Nd is essential), T (T indicates one or more elements selected from iron-group elements, wherein Fe is essential), X (X indicates one or two elements selected from B and C, wherein B is essential), M1 (M1 indicates one or more elements selected from Al, Si, Cr, Mn, Cu, Zn, Ga, Ge, Mo, Sn, W, Pb, and Bi), 0.1 mass % or less of O, 0.05 mass % or less of N, and 0.07 mass % or less of C are contained; the average crystal grain size is 4.0 ?m or less; and relational expression (1) 0.26×D+97?Or?0.26×D+99 is satisfied assuming that the degree of orientation is Or [%] and that the average crystal grain size is D [?m]. With this rare-earth sintered magnet, it is possible to achieve superior magnetic characteristics in which both high Br and high HcJ are achieved.
    Type: Application
    Filed: November 24, 2020
    Publication date: January 5, 2023
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Tetsuya KUME, Kazuaki SAKAKI
  • Publication number: 20220406495
    Abstract: The purpose of the present invention is to achieve both high residual flux density and high coercivity, which are conventionally mutually exclusive characteristics, in an R—Fe—B sintered magnet. The present invention provides an R—Fe—B sintered magnet characterized by having a composition which contains R (R is one or more elements selected from among the rare-earth elements but must be Nd), B. X (X is one or more elements selected from among Ti, Zr, Hf, Nb, V, and Ta), and C, with the remainder comprising Fe, O, other arbitrary elements, and unavoidable impurities. The R—Fe—B sintered magnet is also characterized by satisfying relational expression (1), where [B], [C], [X], and [O] are the atomic percentages of B, C, X, and O, respectively. 0.86×([B]+[C]?2×[X])?4.9<[O]<0.86×([B]+[C]?2×[X])?4.6 ??(1).
    Type: Application
    Filed: November 5, 2020
    Publication date: December 22, 2022
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Akihiro Yoshinari, Kazuaki Sakaki
  • Patent number: 10121588
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 6, 2018
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 10121589
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration and vertical reciprocation to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 6, 2018
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 10090104
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration and vertical reciprocation to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: October 2, 2018
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 10074477
    Abstract: A rare earth sintered magnet is an anisotropic sintered body comprising Nd2Fe14 B crystal phase as primary phase and having the composition R1aTbMcSidBe wherein R1 is a rare earth element inclusive of Sc and Y, T is Fe and/or Co, M is Al, Cu, Zn, In, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, or W, “a” to “e” are 12?a?17, 0?c?10, 0.3?d?7, 5?e?10, and the balance of b, wherein Dy and/or Tb is diffused into the sintered body from its surface.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: September 11, 2018
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroaki Nagata, Yuuji Gouki, Kazuaki Sakaki, Tadao Nomura, Koichi Hirota, Hajime Nakamura
  • Publication number: 20170098503
    Abstract: A rare earth sintered magnet is an anisotropic sintered body comprising Nd2Fe14 B crystal phase as primary phase and having the composition R1aTbMcSidBe wherein R1 is a rare earth element inclusive of Sc and Y, T is Fe and/or Co, M is Al, Cu, Zn, In, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, or W, “a” to “e” are 12?a?17, 0?c?10, 0.3?d?7, 5?e?10, and the balance of b, wherein Dy and/or Tb is diffused into the sintered body from its surface.
    Type: Application
    Filed: December 12, 2016
    Publication date: April 6, 2017
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroaki Nagata, Yuuji Gouki, Kazuaki Sakaki, Tadao Nomura, Koichi Hirota, Hajime Nakamura
  • Patent number: 9133100
    Abstract: A rare earth metal extractant containing, as the extractant component, dialkyldiglycol amide acid which is excellent in breaking down light rare earth elements is reacted in diglycolic acid (X mol) and an esterification agent (Y mol) at a reaction temperature of 70° C. or more and for a reaction time of one hour or more such that the mol ratio of Y/X is 2.5 or more, and is subjected to vacuum concentration. Subsequently, a reaction intermediate product is obtained by removing unreacted products and reaction residue. Then a nonpolar or low-polar solvent which is an organic solvent for forming an organic phase during solvent extraction of the rare earth metal and which is capable of dissolving dialkyldiglycol amide acid is added as the reaction solvent, and the reaction intermediate product is reacted with dialkyl amine (Z mol) such that the mol ratio of Z/X is 0.9 or more.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 15, 2015
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., JAPAN ATOMIC ENERGY AGENCY
    Inventors: Kazuaki Sakaki, Hiroto Sugahara, Tetsuya Kume, Masaki Ohashi, Hirochika Naganawa, Kojiro Shimojo
  • Publication number: 20150179337
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 25, 2015
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Publication number: 20150179336
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration and vertical reciprocation to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 25, 2015
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 8889903
    Abstract: A rare earth metal extractant in the form of a dialkyl diglycol amic acid is synthesized by reacting diglycolic anhydride with a dialkylamine in an aprotic polar solvent, with a molar ratio of dialkylamine to diglycolic anhydride being at least 1.0, and removing the aprotic polar solvent.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: November 18, 2014
    Assignees: Shin-Etsu Chemical Co., Ltd., Nissin Chemical Industry Co., Ltd.
    Inventors: Kazuaki Sakaki, Hiroto Sugahara, Tetsuya Ohashi, Tetsuya Kume, Masahiko Ikka, Hirochika Naganawa, Kojiro Shimojo
  • Patent number: 8841482
    Abstract: A rare earth metal extractant containing, as the extractant component, dialkyldiglycol amide acid which is excellent in breaking down light rare earth elements is reacted in diglycolic acid (X mol) and an esterification agent (Y mol) at a reaction temperature of 70° C. or more and for a reaction time of one hour or more such that the mol ratio of Y/X is 2.5 or more, and is subjected to vacuum concentration. Subsequently, a reaction intermediate product is obtained by removing unreacted products and reaction residue, and an aprotic polar solvent is added as the reaction solvent. Then, the reaction intermediate product is reacted with dialkyl amine (Z mol) such that the mol ratio of Z/X is 0.9 or more and the aprotic polar solvent is removed. As a consequence, a rare earth metal extractant is efficiently synthesized at a low cost and at a high yield without having to use expensive diglycolic acid anhydride and harmful dichloromethane.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 23, 2014
    Assignees: Shin-Etsu Chemical Co., Ltd., Japan Atomic Energy Agency
    Inventors: Kazuaki Sakaki, Hiroto Sugahara, Tetsuya Kume, Masaki Ohashi, Hirochika Naganawa, Kojiro Shimojo
  • Patent number: 8802040
    Abstract: A target light rare earth element is separated from an aqueous solution containing two or more of La, Ce, Pr and Nd by contacting an organic phase containing an extractant with the aqueous solution in a counter-current flow multistage mixer-settler while adding an alkaline solution thereto, and contacting the organic phase with an acid aqueous solution for back-extracting the target element. The extractant is a dialkyl diglycol amic acid having formula: R1R2NCOCH2OCH2COOH wherein R1 and R2 are alkyl, at least one having at least 6 carbon atoms.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 12, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa
  • Publication number: 20130271248
    Abstract: A rare earth sintered magnet as an anisotropic sintered body comprising Nd2Fe14B crystal phase as primary phase and having the composition R1aTbMcSidBe wherein R1 is a rare earth element inclusive of Sc and Y, T is Fe and/or Co, H is Al, Cu, Zn, In, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, or W, “a” to “e” are 12?a?17, 0?c?10, 0.3?d?7, 5?e?10, and the balance of b, wherein Dy and/or Tb is diffused into the sintered body from its surface.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 17, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroaki Nagata, Yuuji Gouki, Kazuaki Sakaki, Tadao Nomura, Koichi Hirota, Hajime Nakamura
  • Patent number: 8519184
    Abstract: A rare earth metal extractant in the form of a dialkyl diglycol amic acid is synthesized by reacting diglycolic anhydride with a dialkylamine in a synthesis medium. A molar ratio (B/A) of dialkylamine (B) to diglycolic anhydride (A) is at least 1.0. A non-polar or low-polar solvent in which the dialkyl diglycol amic acid is dissolvable is used as the synthesis medium.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: August 27, 2013
    Assignees: Shin-Etsu Chemical Co., Ltd., Nissin Chemical Industry Co., Ltd.
    Inventors: Kazuaki Sakaki, Hiroto Sugahara, Tetsuya Ohashi, Tetsuya Kume, Masahiko Ikka, Hirochika Naganawa, Kojiro Shimojo
  • Publication number: 20130123534
    Abstract: A rare earth metal extractant containing, as the extractant component, dialkyldiglycol amide acid which is excellent in breaking down light rare earth elements is reacted in diglycolic acid (X mol) and an esterification agent (Y mol) at a reaction temperature of 70° C. or more and for a reaction time of one hour or more such that the mol ratio of Y/X is 2.5 or more, and is subjected to vacuum concentration. Subsequently, a reaction intermediate product is obtained by removing unreacted products and reaction residue. Then a nonpolar or low-polar solvent which is an organic solvent for forming an organic phase during solvent extraction of the rare earth metal and which is capable of dissolving dialkyldiglycol amide acid is added as the reaction solvent, and the reaction intermediate product is reacted with dialkyl amine (Z mol) such that the mol ratio of Z/X is 0.9 or more.
    Type: Application
    Filed: July 1, 2011
    Publication date: May 16, 2013
    Applicants: JAPAN ATOMIC ENERGY AGENCY, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kazuaki Sakaki, Hiroto Sugahara, Tetsuya Kume, Masaki Ohashi, Hirochika Naganawa, Kojiro Shimojo
  • Publication number: 20130102806
    Abstract: A rare earth metal extractant containing, as the extractant component, dialkyldiglycol amide acid which is excellent in breaking down light rare earth elements is reacted in diglycolic acid (X mol) and an esterification agent (Y mol) at a reaction temperature of 70° C. or more and for a reaction time of one hour or more such that the mol ratio of Y/X is 2.5 or more, and is subjected to vacuum concentration. Subsequently, a reaction intermediate product is obtained by removing unreacted products and reaction residue, and an aprotic polar solvent is added as the reaction solvent. Then, the reaction intermediate product is reacted with dialkyl amine (Z mol) such that the mol ratio of Z/X is 0.9 or more and the aprotic polar solvent is removed. As a consequence, a rare earth metal extractant is efficiently synthesized at a low cost and at a high yield without having to use expensive diglycolic acid anhydride and harmful dichloromethane.
    Type: Application
    Filed: July 1, 2011
    Publication date: April 25, 2013
    Applicants: JAPAN ATOMIC ENERGY AGENCY, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kazuaki Sakaki, Hiroto Sugahara, Tetsuya Kume, Masaki Ohashi, Hirochika Naganawa, Kojiro Shimojo
  • Publication number: 20120328493
    Abstract: A target light rare earth element is separated from an aqueous solution containing two or more of La, Ce, Pr and Nd by contacting an organic phase containing an extractant with the aqueous solution in a counter-current flow multistage mixer-settler while adding an alkaline solution thereto, and contacting the organic phase with an acid aqueous solution for back-extracting the target element. The extractant is a dialkyl diglycol amic acid having formula: R1R2NCOCH2OCH2COOH wherein R1 and R2 are alkyl, at least one having at least 6 carbon atoms.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa
  • Patent number: 8177881
    Abstract: Solvent extraction from an aqueous phase containing first and second rare earth elements is carried out by contacting an organic phase containing a diglycolamic acid as an extractant and a hydrocarbon or a low-polar alcohol as a solvent, with the aqueous phase below pH 3 for extracting the first rare earth element into the organic phase, back-extracting from the organic phase with an aqueous acid solution for recovering the first rare earth element, and recovering the second rare earth element which has not been extracted into the organic phase and has remained in the aqueous phase.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 15, 2012
    Assignees: Shin-Etsu Chemical Co., Ltd., Japan Atomic Energy Agency
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa, Hirochika Naganawa, Kojiro Shimojo