Patents by Inventor Kazuaki Tobari

Kazuaki Tobari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210152113
    Abstract: A power conversion apparatus controls a load apparatus by position sensorless vector control. The power conversion apparatus includes: a current detection unit configured to detect a current passing through the load apparatus; a current detection arithmetic unit configured to calculate a harmonic current component on a dc-axis as a control axis and a harmonic current component on a qc-axis, based on the detected current; a saliency ratio estimation unit configured to output a saliency ratio estimated value based on the harmonic current component on the dc-axis and the harmonic current component on the qc-axis; and a saliency ratio control unit configured to output a current component that increases or decreases a current command value on a d-axis of a rotor coordinate system, based on a deviation between the saliency ratio estimated value and a predetermined saliency ratio.
    Type: Application
    Filed: December 26, 2018
    Publication date: May 20, 2021
    Inventors: Kazuaki TOBARI, Yoshitaka IWAJI, Agnes HADINATA, Yusaku ONUMA, Atsuhiko NAKAMURA, Takuya SUGIMOTO
  • Publication number: 20210152111
    Abstract: An induction motor overheat monitoring method and device detects overheating of an induction motor from a detection value of a current sensor. A resistance calculation relationship data indicating a relationship between a resistance and a feature amount at the time of starting of the induction motor and a determination reference value for determining overheating are stored in advance. At each starting, a current of the induction motor is detected, a signal regarding a phase angle difference is calculated, and a feature amount of the motor is calculated from the signal regarding the phase angle difference. Further, a resistance of the induction motor is calculated by using the feature amount of the motor and the resistance calculation reference data stored in advance. Then, a temperature of the induction motor is calculated from the resistance of the induction motor, and it is determined if the motor is overheated.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 20, 2021
    Inventors: Guangbin ZHOU, Yoshitaka IWAJI, Satoru KANEKO, Kazuaki TOBARI
  • Patent number: 10903767
    Abstract: According to the present invention, in position sensorless control for switching between a 120-degree energization scheme for a low-speed region and a 180-degree energization scheme for a mid-to-high-speed region, stable and highly accurate speed control characteristics are provided by suppressing speed deviation ??r in the low-speed region, and by preventing current jump-up caused by a discontinuous rotational speed occurring during switching to the mid-to-high-speed region. In the case of driving in the 120-degree energization scheme, a voltage command value is corrected such that an estimated speed value or a detected speed value follows a speed command.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: January 26, 2021
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Agnes Hadinata, Yoshitaka Iwaji, Kazuaki Tobari, Yusaku Onuma, Takuya Sugimoto, Masato Ohya
  • Publication number: 20200389117
    Abstract: In a motor drive device 120, a phase compensation amount calculation unit 110 calculates a phase compensation amount ?? for compensating a voltage phase ?v* when a control mode is switched in a control selection unit 90. The control selection unit 90 outputs the three-phase voltage command Vuvw* according to any one of the plurality of control modes based on the modulation factor Kh*, the voltage phase ?v*, and the phase compensation amount ??. A PWM control unit 100 outputs gate signals Gun, Gup, Gvn, Gvp, Gwn, and Gwv based on the three-phase voltage command Vuvw* and a rotor position ?d. The inverter 20 has a plurality of switching elements, and controls the plurality of switching elements based on gate signals Gun, Gup, Gvn, Gyp, Gwn, and Gwv to drive the AC motor 10.
    Type: Application
    Filed: November 28, 2018
    Publication date: December 10, 2020
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Midori TAKAOKA, Junki ISOBE, Kohei MYOEN, Toshiyuki AJIMA, Kazuaki TOBARI, Yoshitaka IWAJI
  • Publication number: 20200052620
    Abstract: According to the present invention, in position sensorless control for switching between a 120-degree energization scheme for a low-speed region and a 180-degree energization scheme for a mid-to-high-speed region, stable and highly accurate speed control characteristics are provided by suppressing speed deviation ??r in the low-speed region, and by preventing current jump-up caused by a discontinuous rotational speed occurring during switching to the mid-to-high-speed region. In the case of driving in the 120-degree energization scheme, a voltage command value is corrected such that an estimated speed value or a detected speed value follows a speed command.
    Type: Application
    Filed: March 2, 2018
    Publication date: February 13, 2020
    Inventors: Agnes HADINATA, Yoshitaka IWAJI, Kazuaki TOBARI, Yusaku ONUMA, Takuya SUGIMOTO, Masato OHYA
  • Patent number: 9698716
    Abstract: The controller estimates torque output by the motor and controls the current supplied to the motor in such a manner that a torque estimate of the motor obtained by the estimation corresponds to the torque command value. A torque estimation calculator 120 estimates the torque output by the motor. A phase error command calculator 125 calculates a command value of a phase error from the deviation between the torque estimate and a torque command value. A speed estimation calculator 130 outputs a speed estimate in such a manner that a phase error estimate corresponds to the command value of the phase error.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 4, 2017
    Assignee: HITACHI CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Kazuaki Tobari, Kazuya Sekine
  • Patent number: 8884575
    Abstract: A drive system of a synchronous electrical motor includes a synchronous electrical motor; a power converter that is connected to the motor with a plurality of switching elements; a controller that outputs a voltage instruction to the power converter; a voltage detection unit for open phases upon application of respective positive and negative pulse voltages between respective two phases out of three-phase windings of the motor; an induced voltage difference for calculating an induced voltage difference that is a difference between an induced voltage detected by the voltage detection unit at each of the open phases upon application of the positive voltage pulse between the corresponding two phases and an induced voltage detected by the voltage detection unit at the open phase upon application of the negative voltage pulse between the two phases.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: November 11, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ryoichi Takahata, Yoshitaka Iwaji, Shigehisa Aoyagi, Kazuaki Tobari
  • Patent number: 8878480
    Abstract: In sequentially selecting and driving two phases of the three-phase stator windings of a synchronous motor, detect a speed electromotive voltage of a de-energized phase, relate the speed electromotive voltage to rotor position information beforehand, then count rotor position information backward based on the detected the speed electromotive voltage to estimate rotor position; and then detect rotation speed from the change rate of the rotor position information so as to achieve highly accurate position and speed control.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 4, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yoshitaka Iwaji, Shigehisa Aoyagi, Kazuaki Tobari, Ryoichi Takahata, Masaki Hano
  • Patent number: 8779701
    Abstract: A sinusoidal signal is superimposed on a current command value of a q-axis (torque shaft) supplied from a host, and according to the resulting current command value, the output voltage of a power converter is controlled. For the calculation of the superimposed signal added to the current command value of the q-axis, with the use of the ripple component information of induced voltage coefficients of the d-axis and q-axis of the rotating coordinate system of a permanent magnet motor, the current command values of the d-axis and q-axis, an average value of induced voltage coefficients of the d-axis, and inductance values of the d-axis and q-axis, the sinusoidal superimposed signal is calculated and added to the above-described current command value of the q-axis.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: July 15, 2014
    Assignee: Kokusan Denki Co., Ltd.
    Inventors: Kazuaki Tobari, Rikio Yoshikawa, Katsuhiro Mochizuki
  • Patent number: 8766575
    Abstract: A synchronous electric motor drive system capable of driving at speeds near zero is provided. An energization mode determination unit switches six energization modes successively based on a terminal potential detected of the de-energized phase of a three-phase synchronous electric motor or on a stator winding wire connection point potential (neutral point potential) detected of the three-phase synchronous transmission unit. A voltage command correction unit corrects by a correction amount ?V an applied voltage command destined for the synchronous electric motor to supply the synchronous electric motor with a repeated waveform of a positive pulse, negative pulse, and zero voltage as a line voltage waveform of the energized phases in each of the six energization modes, the positive pulse voltage being polarized to cause the synchronous electric motor to generate a forward rotation torque, the negative pulse voltage causing the synchronous electric motor to generate a reverse rotation torque.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 1, 2014
    Assignees: Hitachi Automotive Systems, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Yoshitaka Iwaji, Shigehisa Aoyagi, Kazuaki Tobari, Ryoichi Takahata
  • Publication number: 20140176028
    Abstract: The controller estimates torque output by the motor and controls the current supplied to the motor in such a manner that a torque estimate of the motor obtained by the estimation corresponds to the torque command value. A torque estimation calculator 120 estimates the torque output by the motor. A phase error command calculator 125 calculates a command value of a phase error from the deviation between the torque estimate and a torque command value. A speed estimation calculator 130 outputs a speed estimate in such a manner that a phase error estimate corresponds to the command value of the phase error.
    Type: Application
    Filed: August 10, 2012
    Publication date: June 26, 2014
    Inventors: Kazuaki Tobari, Kazuya Sekine
  • Publication number: 20140077738
    Abstract: A position sensor-less driving method is provided that can drive rotation speed/torque control of a permanent magnet motor using an inverter with an ideal sinusoidal current with the minimum number of switching, and can drive at a speed as low as an extremely low speed region close to zero speed. A neutral point potential of a permanent magnet motor is detected in synchronization with PWM waveform of the inverter. A rotor position of the permanent magnet motor is estimated from change of the neutral point potential. When the neutral point potential is detected, timing of each phase of the PWM waveform is shifted to generate three or four types of switch states of which output voltage of the inverter is not zero vector, and neutral point potentials in at least two types of switch states among them are sampled, whereby rotor position of the three-phase synchronous motor is estimated.
    Type: Application
    Filed: May 13, 2011
    Publication date: March 20, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Yoshitaka Iwaji, Shigehisa Aoyagi, Ryoichi Takahata, Kazuaki Tobari
  • Publication number: 20130272899
    Abstract: A drive system of a synchronous electrical motor includes a synchronous electrical motor; a power converter that is connected to the motor with a plurality of switching elements; a controller that outputs a voltage instruction to the power converter; a voltage detection unit for open phases upon application of respective positive and negative pulse voltages between respective two phases out of three-phase windings of the motor; an induced voltage difference for calculating an induced voltage difference that is a difference between an induced voltage detected by the voltage detection unit at each of the open phases upon application of the positive voltage pulse between the corresponding two phases and an induced voltage detected by the voltage detection unit at the open phase upon application of the negative voltage pulse between the two phases.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 17, 2013
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Ryoichi TAKAHATA, Yoshitaka IWAJI, Shigehisa AOYAGI, Kazuaki TOBARI
  • Publication number: 20130243625
    Abstract: A synchronous electric motor drive system capable of driving at speeds near zero is provided. An energization mode determination unit switches six energization modes successively based on a terminal potential detected of the de-energized phase of a three-phase synchronous electric motor or on a stator winding wire connection point potential (neutral point potential) detected of the three-phase synchronous transmission unit. A voltage command correction unit corrects by a correction amount ?V an applied voltage command destined for the synchronous electric motor to supply the synchronous electric motor with a repeated waveform of a positive pulse, negative pulse, and zero voltage as a line voltage waveform of the energized phases in each of the six energization modes, the positive pulse voltage being polarized to cause the synchronous electric motor to generate a forward rotation torque, the negative pulse voltage causing the synchronous electric motor to generate a reverse rotation torque.
    Type: Application
    Filed: July 26, 2011
    Publication date: September 19, 2013
    Applicants: Hitachi Car Engineering Co., Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Yoshitaka Iwaji, Shigehisa Aoyagi, Kazuaki Tobari, Ryoichi Takahata
  • Patent number: 8531148
    Abstract: A control apparatus and a control method for an AC electric motor detect DC bus current plural times at predetermined intervals during first and second predetermined periods and multiply vectors having integrated values of detected values during respective periods as elements by an inverse matrix of a matrix having integrated values during respective periods of sine and cosine functions of output voltage phase of an inverter at the moment that detection is made as elements to thereby estimate reactive and active currents.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 10, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Satoshi Sumita, Kazuaki Tobari, Daisuke Maeda, Yasuo Notohara
  • Patent number: 8436563
    Abstract: If magnitude relations between the output terminal voltage based on a DC negative terminal of the inverter and a threshold voltage that is a fixed value are compared, polarity thereof is changed at a predetermined rotor phase. The magnitude relation, for example, is detected by an inexpensive and simple apparatus such as a level shift circuit and a NOT circuit. The rotor phase of the permanent magnet synchronous motor is inferred on the basis of changes in the magnitude relation and if it is differentiated, a rotation speed is inferred. If the inferred values of the rotor phase and rotation speed are fed back to synchronous operation or vector control, the free-running permanent magnet synchronous motor is restarted.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 7, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Satoshi Sumita, Kazuaki Tobari, Shigehisa Aoyagi, Daisuke Maeda
  • Patent number: 8410735
    Abstract: A torque ripple suppression control device for a permanent magnet motor includes a current command conversion unit that outputs a current command value, a position detector that detects a rotational position of the permanent magnet motor, a current detection unit that detects a current at the permanent magnet motor, an induced voltage coefficient setting unit that outputs an information signal related to an induced voltage coefficient for an induced voltage at the permanent magnet motor, a torque ripple suppression operation unit that outputs a current correction command value for the permanent magnet motor, a current control operation unit that outputs a voltage command value based upon addition results obtained by adding together the current command value and the current correction command value and the current detection value, and a power converter that outputs a voltage with which the permanent magnet motor is to be driven.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 2, 2013
    Assignee: Kokusan Denki Co., Ltd.
    Inventors: Kazuaki Tobari, Yoshitaka Iwaji, Junnosuke Nakatsugawa, Rikio Yoshikawa, Masamichi Yagai
  • Publication number: 20130057193
    Abstract: In sequentially selecting and driving two phases of the three-phase stator windings of a synchronous motor, detect a speed electromotive voltage of a de-energized phase, relate the speed electromotive voltage to rotor position information beforehand, then count rotor position information backward based on the detected the speed electromotive voltage to estimate rotor position; and then detect rotation speed from the change rate of the rotor position information so as to achieve highly accurate position and speed control.
    Type: Application
    Filed: July 26, 2012
    Publication date: March 7, 2013
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Yoshitaka Iwaji, Shigehisa Aoyagi, Kazuaki Tobari, Ryoichi Takahata, Masaki Hano
  • Patent number: 8344671
    Abstract: The invention relates to a speed control method of a magnetic motor and is capable of providing a speed controller of the magnetic motor realizing highly stable, highly efficient and highly responsive control characteristics even around critical torque of the motor. When an excessive torque command value (or a q-axis commanded current value) greater than a torque maximum value (or a q-axis current) that can be outputted by the motor is required, an input of speed control is limited so that the q-axis commanded current value does not increase up to a limit value.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 1, 2013
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Kazuaki Tobari, Yasuo Notohara, Wataru Hatsuse, Dongsheng Li, Kentaro Oi, Yuuji Funayama
  • Patent number: 8305019
    Abstract: When output voltage V1 of an electric power converter reaches a prescribed voltage V1*ref, a difference between V1 and V1*ref is integrated to correct a commanded torque to ?o* (?*=?o*+??).
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: November 6, 2012
    Assignee: Hitachi Car Engineering Co., Ltd.
    Inventors: Kazuaki Tobari, Shigehisa Aoyagi, Kentaro Oi