Patents by Inventor Kazuhiko Kurata

Kazuhiko Kurata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220240410
    Abstract: To provide an opto-electric module that can be cooled efficiently.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 28, 2022
    Inventors: Shigeru Kobayashi, Kazuhiro Shiba, Mitsuru Kurihara, Kazuhiko Kurata
  • Publication number: 20220155537
    Abstract: Provided is an optical module having high efficiency in optical coupling to a functional element on a substrate. An optical module includes: a first optical waveguide disposed parallel to a substrate; a condensing mirror configured to reflect and condense light propagated in the first optical waveguide toward the substrate; a second optical waveguide formed in a tapered shape narrowed toward the substrate, the second optical waveguide guiding the light reflected by the condensing mirror to the vicinity of the surface of the substrate; and an optical function unit disposed on the substrate such that the light emitted from the second optical waveguide is incident on the optical function unit.
    Type: Application
    Filed: November 16, 2021
    Publication date: May 19, 2022
    Inventors: Shigeru Kobayashi, Kazuhiro Shiba, Mitsuru Kurihara, Kazuhiko Kurata
  • Patent number: 10535786
    Abstract: Provided is a light receiving element with high light receiving sensitivity. The light receiving element comprises: a light absorbing layer that absorbs light to generate a carrier; and a diffraction element that converts the optical path of first polarized light, which is obliquely incident on a plane formed by the light absorbing layer, so that the first polarized light propagates in a first direction along the light absorbing layer, and that converts the optical path of second polarized light incident from the same direction as the first polarized light so that the second polarized light propagates in a second direction, opposite the first direction, along the light absorbing layer.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 14, 2020
    Assignee: PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Kenichiro Yashiki, Jun Ushida, Masatoshi Tokushima, Kazuhiko Kurata
  • Publication number: 20170345952
    Abstract: Provided is a light receiving element with high light receiving sensitivity. The light receiving element comprises: a light absorbing layer that absorbs light to generate a carrier; and a diffraction element that converts the optical path of first polarized light, which is obliquely incident on a plane formed by the light absorbing layer, so that the first polarized light propagates in a first direction along the light absorbing layer, and that converts the optical path of second polarized light incident from the same direction as the first polarized light so that the second polarized light propagates in a second direction, opposite the first direction, along the light absorbing layer.
    Type: Application
    Filed: December 16, 2015
    Publication date: November 30, 2017
    Applicant: Photonics Electronics Technology Research Association
    Inventors: Kenichiro Yashiki, Jun Ushida, Masatoshi Tokushima, Kazuhiko Kurata
  • Patent number: 9772461
    Abstract: A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: September 26, 2017
    Assignee: PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Yasuyuki Suzuki, Kenichiro Yashiki, Kazuhiko Kurata
  • Patent number: 9577407
    Abstract: This present invention is provided with: a semiconductor laser for emitting laser light in a plurality of channels; optical waveguides optically coupled in a corresponding manner to the semiconductor lasers, the optical waveguides propagating laser light as input light for each channel; optical modulators for modulating the input light and generating an optical signal; and an optical signal output unit coupled to the optical modulators, the optical signal output unit outputting the optical signal propagated from the optical modulators to the exterior. The present invention is characterized in that the semiconductor laser is arranged on the opposite side from an optical branching unit and the optical modulators, with the optical signal output unit interposed therebetween, in the plane of an opto-electric hybrid board.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: February 21, 2017
    Assignee: PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Kenichiro Yashiki, Kazuhiko Kurata
  • Patent number: 9541718
    Abstract: A photoelectric hybrid device includes an optical connector on a flat optical surface at one end of vertical optical waveguides for inputting and outputting an optical signal. Integration of the photoelectric hybrid device into an interposer or the like is standardized. The photoelectric hybrid device includes: conductive pins connected to an electric signal pathway for a photoelectric hybrid substrate; a translucent member having a flat optical surface and a translucent part; and self-organizing optical waveguides that form an optical path between the translucent part and an optical waveguide. The flat optical surface is not lower than the tops of the electrical connection parts on the conductive pins. Collision of the optical connector and the tops of the electrical connection parts can be avoided when an optical connector on which an optical waveguide that transmits an optical signal among the optical waveguides.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: January 10, 2017
    Assignee: PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Ichiro Ogura, Koichi Takemura, Mitsuru Kurihara, Toshinori Uemura, Akio Ukita, Kazuhiko Kurata
  • Publication number: 20160266333
    Abstract: A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
    Type: Application
    Filed: October 1, 2014
    Publication date: September 15, 2016
    Applicant: Photonics Electronics Technology Research Associat ion
    Inventors: Yasuyuki Suzuki, Kenichiro Yashiki, Kazuhiko Kurata
  • Publication number: 20160164251
    Abstract: Provided is a transmission unit for an optical transmitter/receiver or an optical transmitter provided with an optical integrated circuit, characterized in the arrangement of a single-channel or multichannel semiconductor laser and the placement of a plurality of optical waveguides. This present invention is provided with: a semiconductor laser for emitting laser light in a plurality of channels; optical waveguides optically coupled in a corresponding manner to the semiconductor lasers, the optical waveguides propagating laser light as input light for each channel; optical modulators for modulating the input light and generating an optical signal; and an optical signal output unit coupled to the optical modulators, the optical signal output unit outputting the optical signal propagated from the optical modulators to the exterior.
    Type: Application
    Filed: July 18, 2014
    Publication date: June 9, 2016
    Inventors: Kenichiro Yashiki, Kazuhiko Kurata
  • Publication number: 20160062063
    Abstract: In a photoelectric hybrid device, an optical connector is mounted on a flat optical surface provided on one end of vertical optical waveguides for inputting and outputting an optical signal, and along with making integration of the photoelectric hybrid device into an interposer or the like easy, integration is standardized. The photoelectric hybrid device is provided with: conductive pins (108) that are connected to an electric signal pathway for a photoelectric hybrid substrate; a translucent member (116) that has a flat optical surface and also has a translucent part (118); and a plurality of self organizing optical waveguides (122) that form an optical path between the translucent part (118) and an optical waveguide of the photoelectric hybrid substrate.
    Type: Application
    Filed: March 20, 2014
    Publication date: March 3, 2016
    Inventors: Ichiro Ogura, Koichi Takemura, Mitsuru Kurihara, Toshinori Uemura, Akio Ukita, Kazuhiko Kurata
  • Patent number: 8317411
    Abstract: A connector holder fixes an optical connector assembled at a leading end of an optical fiber to an optical module having a light input/output end so that the optical fiber and the light input/output end is optically connected. The connector holder is provided with a holding section for storing at least a part of the optical connector, and a cover section attached to the holding section to be freely opened and closed. The cover section is provided with a cover section main body, and a pressing section which presses the optical connector toward the optical module.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 27, 2012
    Assignees: Fujikura Ltd., NEC Corporation
    Inventors: Kunihiko Fujiwara, Akito Nishimura, Kenji Sasaki, Yukio Hayashi, Kazuhiko Kurata, Takashi Yoshikawa, Junichi Sasaki
  • Patent number: 8172467
    Abstract: An optical backplane connector with a board removable (being possible to insert and remove) therein in the direction perpendicular to the backplane plate surface is arranged on a backplane having optical transmission paths. The optical backplane connector accommodates a photoelectric conversion module in such a manner the incident and exit light are perpendicular to the backplane and a transparent board with a photoelectric conversion element mounted thereon is perpendicular to the board and parallel to the backplane. The conduction between the electric contacts of the photoelectric conversion module and the inner electric contacts of the optical backplane connector is held by mechanical contact. At the end portion of the optical transmission path on the backplane, an optical connector having a 45? mirror and guide pins is mounted. The positioning operation is achieved by fitting the guide pins of the optical connector with the guide holes of the photoelectric conversion module.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 8, 2012
    Assignee: NEC Corporation
    Inventors: Junichi Sasaki, Kazuhiko Kurata, Takashi Yoshikawa, Shigeyuki Yanagimachi
  • Publication number: 20120063729
    Abstract: A connector holder fixes an optical connector assembled at a leading end of an optical fiber to an optical module having a light input/output end so that the optical fiber and the light input/output end is optically connected. The connector holder is provided with a holding section for storing at least a part of the optical connector, and a cover section attached to the holding section to be freely opened and closed. The cover section is provided with a cover section main body, and a pressing section which presses the optical connector toward the optical module.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Applicants: NEC CORPORATION, FUJIKURA LTD.
    Inventors: Kunihiko Fujiwara, Akito Nishimura, Kenji Sasaki, Yukio Hayashi, Kazuhiko Kurata, Takashi Yoshikawa, Junichi Sasaki
  • Patent number: 8083418
    Abstract: A connector holder fixes an optical connector assembled at a leading end of an optical fiber to an optical module having a light input/output end so that the optical fiber and the light input/output end is optically connected. The connector holder is provided with a holding section for storing at least a part of the optical connector, and a cover section attached to the holding section to be freely opened and closed. The cover section is provided with a cover section main body, and a pressing section which presses the optical connector toward the optical module.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: December 27, 2011
    Assignees: Fujikura Ltd, NEC Corporation
    Inventors: Kunihiko Fujiwara, Akito Nishimura, Kenji Sasaki, Yukio Hayashi, Kazuhiko Kurata, Takashi Yoshikawa, Junichi Sasaki
  • Patent number: 7918610
    Abstract: An optical connector fitted upon a tip end portion of an optical fiber ribbon and disposed to face an optical input and output terminators which are installed upon a substrate, and which optically connects between optical fibers of the optical fiber ribbon and each of the optical input and output terminators. The optical connector includes a block shaped connector main body which is disposed to face the optical input and output terminators.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: April 5, 2011
    Assignees: Fujikura Ltd., NEC Corporation
    Inventors: Kunihiko Fujiwara, Akito Nishimura, Yukio Hayashi, Tetsuo Nozawa, Takanori Shimizu, Ichiro Hatakeyama, Kazuhiko Kurata
  • Patent number: 7783143
    Abstract: A semiconductor device has printed wiring board (11) where electric wiring (18) connected to LSI chip (17) and to planar optical element (21) is formed, and where optical waveguide (25) which transfers light inputted into planar optical element (21) and/or light outputted from planar optical element (21) is fixed. Planar optical element (21) is mounted in one end of small substrate (13), and another end of small substrate (13) is connected to printed wiring board (11) by solder bump (26). One end of small substrate (13) where planar optical element (21) is mounted is fixed to printed wiring board (11) by a fixing mechanism. Small substrate (13) has flexible section (15), which is easily deformable compared with other portions of printed wiring board (11) and small substrate (13), in at least a partial region between one end where planar optical element (21) is mounted and another end electrically connected to printed wiring board (11).
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 24, 2010
    Assignee: NEC Corporation
    Inventors: Kazunori Miyoshi, Kazuhiko Kurata, Takanori Shimizu, Ichiro Hatakeyama, Junichi Sasaki
  • Patent number: 7693360
    Abstract: On the back surface of a transparent plate having a light extracting part for outputting lights to the outside, an electrode for wiring, and an electrode for an electromagnetic shield, an optical device is flip-chip mounted right under the light extracting part, an a driver IC is flip-chip mounted at a desired position with metal bumps. When currents driving the optical device flow from the driver IC according to an electric logical signal from the outside, an optical signal is emitted from the optical device, and is output to the outside through the light extracting part. The light extracting part may be provided with a light coupling material or an optical axis converter.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: April 6, 2010
    Assignee: NEC Corporation
    Inventors: Takanori Shimizu, Takara Sugimoto, Jun-ichi Sasaki, Kazuhiko Kurata
  • Patent number: 7645075
    Abstract: An optical backplane includes an optical connector which receives juxtaposed optical signals transmitted in nonparallel to the main surface of a circuit substrate from the circuit substrate or transmits juxtaposed optical signals in nonparallel to the main surface of the circuit substrate to the circuit substrate. The optical connector disposes and accommodates edge portions of a plurality of optical fibers and the disposing direction of the optical fibers in the optical connector is in nonparallel to the main surface of the circuit substrate.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: January 12, 2010
    Assignees: NEC Corporation, Hirose Electric Co., Ltd., Sumitomo Electric Induestries, Ltd., Hitachi Chemical Company, Ltd.
    Inventors: Junichi Sasaki, Kazuhiko Kurata, Shuji Suzuki, Kazuhito Saito, Hiroshi Masuda, Osamu Ibaragi, Masao Kinoshita
  • Publication number: 20090310914
    Abstract: An optical backplane connector with a board removable (being possible to insert and remove) therein in the direction perpendicular to the backplane plate surface is arranged on a backplane having optical transmission paths. The optical backplane connector accommodates a photoelectric conversion module in such a manner the incident and exit light are perpendicular to the backplane and a transparent board with a photoelectric conversion element mounted thereon is perpendicular to the board and parallel to the backplane. The conduction between the electric contacts of the photoelectric conversion module and the inner electric contacts of the optical backplane connector is held by mechanical contact. At the end portion of the optical transmission path on the backplane, an optical connector having a 45? mirror and guide pins is mounted. The positioning operation is achieved by fitting the guide pins of the optical connector with the guide holes of the photoelectric conversion module.
    Type: Application
    Filed: April 21, 2006
    Publication date: December 17, 2009
    Applicant: NEC CORPORATION
    Inventors: Junichi Sasaki, Kazuhiko Kurata, Takashi Yoshikawa, Shigeyuki Yanagimachi
  • Patent number: 7620272
    Abstract: A photoelectric composite module has an optical device, a package and a flexible printed circuit that is set along both case parts of the package, and electric wiring for the optical device is formed thereon. The package has a first case part and a second case part that is connected with the first case part by a hinge and is set on a mounted board. The optical device is joined with a surface that faces the first case part in said flexible printed circuit. The flexible printed circuit has light extraction means for transmitting an optical signal that should be exchanged between the optical device and the optical waveguide. The package has short-circuiting means for making a short circuit between the electrical wiring of the flexible printed circuit and the electrical wiring of the mounted board.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: November 17, 2009
    Assignee: NEC Corporation
    Inventors: Tomoyuki Hino, Kazuhiko Kurata, Ichiro Ogura, Junichi Sasaki, Ichiro Hatakeyama, Yoichi Hashimoto, Ryosuke Kuribayashi